Kernel Trajectory Maps for Multi-Modal Probabilistic Motion Prediction
暂无分享,去创建一个
[1] Alexander J. Smola,et al. Exponential Regret Bounds for Gaussian Process Bandits with Deterministic Observations , 2012, ICML.
[2] Simo Särkkä,et al. Batch Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression , 2014, Robotics: Science and Systems.
[3] Byron Boots,et al. Continuous-time Gaussian process motion planning via probabilistic inference , 2017, Int. J. Robotics Res..
[4] Rares Ambrus,et al. Modeling motion patterns of dynamic objects by IOHMM , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[5] Hong Chen,et al. Error Analysis of Generalized Nyström Kernel Regression , 2016, NIPS.
[6] P. Casey,et al. Federal Highway Administration , 1994 .
[7] Christopher M. Bishop,et al. Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .
[8] Petros Drineas,et al. On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..
[9] Dariu M. Gavrila,et al. Human motion trajectory prediction: a survey , 2019, Int. J. Robotics Res..
[10] H. Hahn. Bemerkungen zu den Untersuchungen des Herrn M. Fréchet: Sur quelques points du calcul fonctionnel , 1908 .
[11] Jean-Michel Loubes,et al. Review and Perspective for Distance-Based Clustering of Vehicle Trajectories , 2016, IEEE Transactions on Intelligent Transportation Systems.
[12] Nando de Freitas,et al. Bayesian Multi-Scale Optimistic Optimization , 2014, AISTATS.
[13] Jari Saarinen,et al. Conditional transition maps: Learning motion patterns in dynamic environments , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[14] Bernhard Schölkopf,et al. The Kernel Trick for Distances , 2000, NIPS.
[15] Barbara Majecka,et al. Statistical models of pedestrian behaviour in the Forum , 2009 .
[16] Matthias W. Seeger,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[17] Fabio Tozeto Ramos,et al. Directional Grid Maps: Modeling Multimodal Angular Uncertainty in Dynamic Environments , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
[18] Melanie Hilario,et al. Distances and (Indefinite) Kernels for Sets of Objects , 2006, Sixth International Conference on Data Mining (ICDM'06).
[19] S. Srihari. Mixture Density Networks , 1994 .
[20] Fabio Tozeto Ramos,et al. Multi-modal estimation with kernel embeddings for learning motion models , 2013, 2013 IEEE International Conference on Robotics and Automation.
[21] Lionel Ott,et al. Spatiotemporal Learning of Directional Uncertainty in Urban Environments With Kernel Recurrent Mixture Density Networks , 2019, IEEE Robotics and Automation Letters.
[22] Maja J. Mataric,et al. Temporal occupancy grids: a method for classifying the spatio-temporal properties of the environment , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.
[23] Byron Boots,et al. Functional Gradient Motion Planning in Reproducing Kernel Hilbert Spaces , 2016, Robotics: Science and Systems.
[24] Erik Schaffernicht,et al. Enabling Flow Awareness for Mobile Robots in Partially Observable Environments , 2017, IEEE Robotics and Automation Letters.
[25] H. Mannila,et al. Computing Discrete Fréchet Distance ∗ , 1994 .
[26] Grzegorz Cielniak,et al. Modelling and Predicting Rhythmic Flow Patterns in Dynamic Environments , 2018, TAROS.
[27] Tom Duckett,et al. FreMEn: Frequency Map Enhancement for Long-Term Mobile Robot Autonomy in Changing Environments , 2017, IEEE Transactions on Robotics.
[28] Axel Brando Guillaumes,et al. Mixture density networks for distribution and uncertainty estimation , 2017 .
[29] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[30] Fabio Tozeto Ramos,et al. Stochastic functional gradient for motion planning in continuous occupancy maps , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).
[31] Claus Bahlmann,et al. Learning with Distance Substitution Kernels , 2004, DAGM-Symposium.
[32] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[33] H. Hahn. Sur quelques points du calcul fonctionnel , 1908 .
[34] Michael W. Mahoney,et al. Fast Randomized Kernel Ridge Regression with Statistical Guarantees , 2015, NIPS.
[35] Ameet Talwalkar,et al. Sampling Methods for the Nyström Method , 2012, J. Mach. Learn. Res..
[36] Nando de Freitas,et al. An Introduction to MCMC for Machine Learning , 2004, Machine Learning.
[37] LI X.RONG,et al. Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .