Kernel Trajectory Maps for Multi-Modal Probabilistic Motion Prediction

Understanding the dynamics of an environment, such as the movement of humans and vehicles, is crucial for agents to achieve long-term autonomy in urban environments. This requires the development of methods to capture the multi-modal and probabilistic nature of motion patterns. We present Kernel Trajectory Maps (KTM) to capture the trajectories of movement in an environment. KTMs leverage the expressiveness of kernels from non-parametric modelling by projecting input trajectories onto a set of representative trajectories, to condition on a sequence of observed waypoint coordinates, and predict a multi-modal distribution over possible future trajectories. The output is a mixture of continuous stochastic processes, where each realisation is a continuous functional trajectory, which can be queried at arbitrarily fine time steps.

[1]  Alexander J. Smola,et al.  Exponential Regret Bounds for Gaussian Process Bandits with Deterministic Observations , 2012, ICML.

[2]  Simo Särkkä,et al.  Batch Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression , 2014, Robotics: Science and Systems.

[3]  Byron Boots,et al.  Continuous-time Gaussian process motion planning via probabilistic inference , 2017, Int. J. Robotics Res..

[4]  Rares Ambrus,et al.  Modeling motion patterns of dynamic objects by IOHMM , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Hong Chen,et al.  Error Analysis of Generalized Nyström Kernel Regression , 2016, NIPS.

[6]  P. Casey,et al.  Federal Highway Administration , 1994 .

[7]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[8]  Petros Drineas,et al.  On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..

[9]  Dariu M. Gavrila,et al.  Human motion trajectory prediction: a survey , 2019, Int. J. Robotics Res..

[10]  H. Hahn Bemerkungen zu den Untersuchungen des Herrn M. Fréchet: Sur quelques points du calcul fonctionnel , 1908 .

[11]  Jean-Michel Loubes,et al.  Review and Perspective for Distance-Based Clustering of Vehicle Trajectories , 2016, IEEE Transactions on Intelligent Transportation Systems.

[12]  Nando de Freitas,et al.  Bayesian Multi-Scale Optimistic Optimization , 2014, AISTATS.

[13]  Jari Saarinen,et al.  Conditional transition maps: Learning motion patterns in dynamic environments , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Bernhard Schölkopf,et al.  The Kernel Trick for Distances , 2000, NIPS.

[15]  Barbara Majecka,et al.  Statistical models of pedestrian behaviour in the Forum , 2009 .

[16]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[17]  Fabio Tozeto Ramos,et al.  Directional Grid Maps: Modeling Multimodal Angular Uncertainty in Dynamic Environments , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[18]  Melanie Hilario,et al.  Distances and (Indefinite) Kernels for Sets of Objects , 2006, Sixth International Conference on Data Mining (ICDM'06).

[19]  S. Srihari Mixture Density Networks , 1994 .

[20]  Fabio Tozeto Ramos,et al.  Multi-modal estimation with kernel embeddings for learning motion models , 2013, 2013 IEEE International Conference on Robotics and Automation.

[21]  Lionel Ott,et al.  Spatiotemporal Learning of Directional Uncertainty in Urban Environments With Kernel Recurrent Mixture Density Networks , 2019, IEEE Robotics and Automation Letters.

[22]  Maja J. Mataric,et al.  Temporal occupancy grids: a method for classifying the spatio-temporal properties of the environment , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Byron Boots,et al.  Functional Gradient Motion Planning in Reproducing Kernel Hilbert Spaces , 2016, Robotics: Science and Systems.

[24]  Erik Schaffernicht,et al.  Enabling Flow Awareness for Mobile Robots in Partially Observable Environments , 2017, IEEE Robotics and Automation Letters.

[25]  H. Mannila,et al.  Computing Discrete Fréchet Distance ∗ , 1994 .

[26]  Grzegorz Cielniak,et al.  Modelling and Predicting Rhythmic Flow Patterns in Dynamic Environments , 2018, TAROS.

[27]  Tom Duckett,et al.  FreMEn: Frequency Map Enhancement for Long-Term Mobile Robot Autonomy in Changing Environments , 2017, IEEE Transactions on Robotics.

[28]  Axel Brando Guillaumes,et al.  Mixture density networks for distribution and uncertainty estimation , 2017 .

[29]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[30]  Fabio Tozeto Ramos,et al.  Stochastic functional gradient for motion planning in continuous occupancy maps , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[31]  Claus Bahlmann,et al.  Learning with Distance Substitution Kernels , 2004, DAGM-Symposium.

[32]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[33]  H. Hahn Sur quelques points du calcul fonctionnel , 1908 .

[34]  Michael W. Mahoney,et al.  Fast Randomized Kernel Ridge Regression with Statistical Guarantees , 2015, NIPS.

[35]  Ameet Talwalkar,et al.  Sampling Methods for the Nyström Method , 2012, J. Mach. Learn. Res..

[36]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[37]  LI X.RONG,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .