A comparative study of design code criteria for prediction of the fatigue limit under in-phase and out-of-phase tension–torsion cycles

Abstract Criteria for the fatigue assessment of multiaxial, non-proportional stress cycles have been prescribed by engineering design codes and implemented in fatigue post-processors. Cases in point are the normal-stress (API RP 17G), Findley, Mises (BPVC-VIII-2), Mises–Sines, Tresca (BPVC-III-1), and Tresca–Sines (BPVC-VIII-3) criteria (design codes). In the present work, these criteria have been applied to the tension–torsion fatigue limit. Theoretical predictions have been compared with fatigue test data from 220 different tension–torsion fatigue test series on wrought steel, cast iron and an Al alloy. The normal-stress criterion yields excellent predictions for cast iron, whereas those for wrought alloys tend to be unsafe. For wrought steel and the Al alloy, the shear-stress criteria yield predictions that are closer to the observed data. For all criteria, mean values of the predictions are within 12% of the observed fatigue limits, whereas standard deviations are typically 20 % of the mean values. In addition to the traditional formulation of critical-plane criteria, based on extreme values of normal and shear stress components during a cycle, a ‘simultaneous stress component’ (SSC) formulation according to the ASME code, based on the stress components for a critical pair of points in time during the cycle, has been considered. For the stress cycles investigated, the SSC formulation makes a significant difference only for the Findley criterion.

[1]  F. Klubberg,et al.  Versuchs‐ und Rechendaten zur Dauerschwingfestigkeit von metallischen Werkstoffen unter mehrachsiger Beanspruchung , 1992 .

[2]  André Galtier Contribution à l'étude de l'endommagement des aciers sous sollicitations uni ou multi-axiales , 1993 .

[3]  Gunnar Härkegård,et al.  Damage tolerant design of cast components based on defects detected by 3D X-ray computed tomography , 2012 .

[4]  Thierry Palin-Luc,et al.  A volumetric energy based high cycle multiaxial fatigue citerion , 2003 .

[5]  Jan Papuga A survey on evaluating the fatigue limit under multiaxial loading , 2011 .

[6]  Minoru Kawamoto,et al.  The Strength of Metals under Combined Alternating Bending and Torsion with Phace Difference , 1946 .

[7]  T. Palin-Luc Fatigue multiaxiale d'une fonte GS sous sollicitations combinées d'amplitude variable , 1996 .

[8]  Mauro Filippini,et al.  A comparative study of multiaxial high-cycle fatigue criteria for metals , 1997 .

[9]  Andrea Carpinteri,et al.  Multiaxial high-cycle fatigue criterion for hard metals , 2001 .

[10]  W. Findley A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending , 1959 .

[11]  H. J. Gough,et al.  The Strength of Metals under Combined Alternating Stresses , 1935 .

[12]  Gunnar Härkegård,et al.  Assessment of methods for prediction of notch and size effects at the fatigue limit based on test data by Böhm and Magin , 2010 .

[13]  H. Gough Engineering Steels under Combined Cyclic and Static Stresses , 1949 .

[14]  N. Dowling,et al.  Mechanical Behavior of Materials , 2012 .

[15]  Application of multiaxial fatigue criteria to materials containing defects , 2003 .

[16]  W. Findley,et al.  Combined-stress Fatigue Strength of 76S-T61 Aluminum Alloy with Superimposed Mean Stresses and Corrections for Yielding , 1953 .

[17]  Harald Zenner,et al.  Dauerschwingfestigkeit bei nichtsynchroner mehrachsiger Beanspruchung , 1985 .

[18]  Serge Lasserre,et al.  Multiaxial fatigue endurance of 30NCD16 steel , 1989 .

[19]  R. Rabb,et al.  Multiaxial fatigue criteria applied to medium speed diesel engines , 2013 .

[20]  Tomokazu Matake An Explanation on Fatigue Limit under Combined Stress , 1977 .

[21]  Serge Lasserre,et al.  Multiaxial fatigue of steel—testing out of phase and in blocks: validity and applicability of some criteria , 1992 .

[22]  K. R. Rao Companion guide to the ASME boiler & pressure vessel code , 2012 .

[23]  Langzeit‐ und Dauerschwingfestigkeit des Vergütungsstahls 25CrMo4 bei mehrachsiger Beanspruchung durch drei schwingende Lastspannungen , 1991 .

[24]  Russell Wanhill,et al.  Typical fatigue-initiating discontinuities in metallic aircraft structures , 2012 .

[25]  Finn Kirkemo,et al.  Fatigue Capacity of Steel Cylindrical Bodies and Conduits Subjected to Cyclic Pressure , 2014 .