Conflicting phylogenies of balsaminoid families and the polytomy in Ericales: combining data in a Bayesian framework.

The balsaminoid Ericales, namely Balsaminaceae, Marcgraviaceae, Tetrameristaceae, and Pellicieraceae have been confidently placed at the base of Ericales, but the relations among these families have been resolved differently in recent analyses. Sister to this basal group is a large polytomy comprising all other families of Ericales, which is associated with short internodes. Because there are more than 13 kb of sequences for a large sampling of representatives, a thorough examination of the available data with novel methods seemed in place. Because of its computational speed, Bayesian phylogenetics allows for the use of parameter-rich models that can accommodate differences in the evolutionary process between partitions in a simultaneous analysis. In addition, there are recently proposed Bayesian strategies of assessing incongruence between partitions. We have applied these methods to the current problems in Ericales phylogeny, taking into account reported pitfalls in Bayesian analysis such as model selection uncertainty. Based on our results we infer several, previously unresolved relationships in the order Ericales. In balsaminoid families, we find that the closest relatives of Balsaminaceae are Marcgraviaceae. In the Ericales polytomy, we find strong support for Pentaphylacaceae sensu APG II as the sister group of Maesaceae. In addition, Symplocaceae receive a position as sister to Theaceae and these families form a monophyletic group together with Styracaceae-Diapensiaceae. At the base of this clade are Actinidiaceae and Clethraceae. The positions of Ebenaceae and Lecythidaceae remain uncertain.

[1]  Polemoniaceae phylogeny and classification: implications of sequence data from the chloroplast gene ndhF. , 2000, American journal of botany.

[2]  F. Kauff,et al.  Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. , 2002, Molecular phylogenetics and evolution.

[3]  Susan Holmes,et al.  Statistics for phylogenetic trees. , 2003, Theoretical population biology.

[4]  Burkhard Morgenstern,et al.  DIALIGN2: Improvement of the segment to segment approach to multiple sequence alignment , 1999, German Conference on Bioinformatics.

[5]  Yong Wang,et al.  An index of substitution saturation and its application. , 2003, Molecular phylogenetics and evolution.

[6]  M. Chase,et al.  Silica gel: An ideal material for field preservation of leaf samples for DNA studies , 1991 .

[7]  C. Meldrum,et al.  Phylogeny and Biogeography of the Styracaceae , 2001, International Journal of Plant Sciences.

[8]  D. Soltis,et al.  Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. , 2000, Systematic biology.

[9]  T. Baretta-Kuipers Comparative wood anatomy of Bonnetiaceae, Theaceae and Guttiferae , 1976 .

[10]  W. Kress,et al.  Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences , 2000 .

[11]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[12]  A. Graybeal,et al.  Is it better to add taxa or characters to a difficult phylogenetic problem? , 1998, Systematic biology.

[13]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[14]  F. Ronquist,et al.  A maximum-likelihood analysis of eight phylogenetic markers in gallwasps (Hymenoptera: Cynipidae): implications for insect phylogenetic studies. , 2002, Molecular phylogenetics and evolution.

[15]  Nick Goldman,et al.  Phylogenetic information and experimental design in molecular systematics , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  M. Chase,et al.  A molecular evaluation of the monophyly of the order Ebenales based upon rbcL sequence data , 1996 .

[17]  Sudhir Kumar,et al.  Taxon sampling, bioinformatics, and phylogenomics. , 2003, Systematic biology.

[18]  W. Dickison Floral anatomy of the Styracaceae, including observations on intra-ovarian trichomes , 1993 .

[19]  Elizabeth A. Kellogg,et al.  An ordinal classification for the families of flowering plants , 1998 .

[20]  J. Bull,et al.  Combining data in phylogenetic analysis. , 1996, Trends in ecology & evolution.

[21]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[22]  J. Bull,et al.  Partitioning and combining data in phylogenetic analysis , 1993 .

[23]  P. Baas,et al.  Wood Anatomy of Trees and Shrubs from China ii. Theaceae , 1992 .

[24]  A. Anderberg,et al.  Phylogeny of Diapensiaceae Based on Molecular Data and Morphology , 2009 .

[25]  B. Rannala,et al.  Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.

[26]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[27]  Pamela S Soltis,et al.  Phylogeny of seed plants based on evidence from eight genes. , 2002, American journal of botany.

[28]  Sudhir Kumar,et al.  Incomplete taxon sampling is not a problem for phylogenetic inference , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  B. Larget,et al.  Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees , 2000 .

[30]  B. G. Baldwin,et al.  Molecular phylogenetics of Fouquieriaceae: evidence from nuclear rDNA ITS studies. , 1999, American journal of botany.

[31]  W. John Kress,et al.  Angiosperm Phylogeny Inferred from 18S Ribosomal DNA Sequences , 1997 .

[32]  P. Baas,et al.  The Wood Anatomy of the Theaceae , 1991 .

[33]  Derrick J. Zwickl,et al.  Increased taxon sampling greatly reduces phylogenetic error. , 2002, Systematic biology.

[34]  A. Rodrigo,et al.  Likelihood-based tests of topologies in phylogenetics. , 2000, Systematic biology.

[35]  M. Hershkovitz,et al.  Ribosomal DNA Sequences and Angiosperm Systematics , 1999 .

[36]  E. Smets,et al.  Floral Development of Three Maesa Species, with Special Emphasis on the Position of the Genus within Primulales , 2000 .

[37]  C. Tsou Early floral development of Camellioideae (Theaceae). , 1998, American journal of botany.

[38]  Masatoshi Nei,et al.  Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Thorne An Updated Phylogenetic Classification of the Flowering Plants , 1992 .

[40]  A. L. Takhtadzhi︠a︡n Diversity and classification of flowering plants , 1997 .

[41]  J. Willis A dictionary of the flowering plants and ferns , 1967 .

[42]  A. Cronquist Angiosperm Orders and Families. (Book Reviews: An Integrated System of Classification of Flowering Plants) , 1982 .

[43]  The Uncertain Systematic Position of Symplocos (Symplocaceae): Evidence from a Floral Ontogenetic Study , 2002, International Journal of Plant Sciences.

[44]  M. Suchard,et al.  Hierarchical phylogenetic models for analyzing multipartite sequence data. , 2003, Systematic biology.

[45]  Jonathan P. Bollback,et al.  Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology , 2001, Science.

[46]  C. R. Parks,et al.  Phylogenetic relationships of Theaceae inferred from chloroplast DNA sequence data. , 2001, American journal of botany.

[47]  Robert W. Hess,et al.  Anatomy of the Dicotyledons. , 1950 .

[48]  T. Buckley,et al.  Model misspecification and probabilistic tests of topology: evidence from empirical data sets. , 2002, Systematic biology.

[49]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[50]  F. Lutzoni,et al.  Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. , 2003, Molecular biology and evolution.

[51]  Jonathan F. Wendel,et al.  Phylogenetic Incongruence: Window into Genome History and Molecular Evolution , 1998 .

[52]  C. Chatfield Model uncertainty, data mining and statistical inference , 1995 .

[53]  M. Källersjö,et al.  Phylogenetic relationships in the order Ericales s.l.: analyses of molecular data from five genes from the plastid and mitochondrial genomes. , 2002, American journal of botany.

[54]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[55]  ohn,et al.  Potential Applications and Pitfalls of Bayesian Inference of Phylogeny , 2002 .

[56]  Derrick J. Zwickl,et al.  Increased taxon sampling is advantageous for phylogenetic inference. , 2002, Systematic biology.

[57]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[58]  W. Doolittle,et al.  Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. , 2003, Molecular biology and evolution.

[59]  P. Hollingsworth,et al.  Molecular systematics and plant evolution , 1999 .

[60]  M. Källersjö,et al.  Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. , 2002, Molecular phylogenetics and evolution.

[61]  Zih E N G Ya N,et al.  On the Best Evolutionary Rate for Phylogenetic Analysis , 1998 .

[62]  H. Saedler,et al.  MADS-box genes in plant ontogeny and phylogeny: Haeckel's 'biogenetic law' revisited. , 1995, Current opinion in genetics & development.

[63]  M. Simmons,et al.  The effects of increasing genetic distance on alignment of, and tree construction from, rDNA internal transcribed spacer sequences. , 2003, Molecular phylogenetics and evolution.

[64]  C. Morton,et al.  Comparative pollen morphology of the styracaceae , 1992 .

[65]  Peter Arensburger,et al.  Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera. , 2002, Systematic biology.

[66]  Victor A. Albert,et al.  Ontogenetic Systematics, Molecular Developmental Genetics, and the Angiosperm Petal , 1998 .

[67]  M. Källersjö,et al.  Generic realignment in primuloid families of the Ericales s.l.: a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology. , 2000, American journal of botany.

[68]  M. Källersjö,et al.  Maesaceae, a new primuloid family in the order Ericales s.l , 2000 .

[69]  Thomas J. White,et al.  PCR protocols: a guide to methods and applications. , 1990 .

[70]  M. Steel,et al.  Recovering evolutionary trees under a more realistic model of sequence evolution. , 1994, Molecular biology and evolution.

[71]  Derrick J. Zwickl,et al.  Is sparse taxon sampling a problem for phylogenetic inference? , 2003, Systematic biology.

[72]  D Penny,et al.  Estimating the reliability of evolutionary trees. , 1986, Molecular biology and evolution.

[73]  C. R. Metcalfe,et al.  Anatomy of the dicotyledons, Vols. 1 & 2 , 1950 .

[74]  Douglas E. Soltis,et al.  Molecular Systematics of Plants , 1992, Springer US.

[75]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[76]  Olivier Poch,et al.  A comprehensive comparison of multiple sequence alignment programs , 1999, Nucleic Acids Res..

[77]  H. Philippe,et al.  Comparison of molecular and paleontological data in diatoms suggests a major gap in the fossil record , 1994 .

[78]  M. Chase,et al.  Lissocarpa Is Sister to Diospyros (Ebenaceae) , 2001 .

[79]  Z. Yang,et al.  Among-site rate variation and its impact on phylogenetic analyses. , 1996, Trends in ecology & evolution.

[80]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[81]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[82]  P. Baas,et al.  Comparative Wood Anatomy of Symplocos and Latitude and Altitude of Provenance , 1981 .

[83]  Z. Yang,et al.  Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. , 1993, Molecular biology and evolution.

[84]  T. Reeder A phylogeny of the Australian Sphenomorphus group (Scincidae: Squamata) and the phylogenetic placement of the crocodile skinks (Tribolonotus): Bayesian approaches to assessing congruence and obtaining confidence in maximum likelihood inferred relationships. , 2003, Molecular phylogenetics and evolution.

[85]  R. Jorgensen,et al.  Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[86]  R. Price,et al.  Phylogenetic Relationships of Marcgraviaceae: Insights from Three Chloroplast Genes , 2009 .

[87]  D. Soltis,et al.  Phylogenetic Analysis of Asterids Based on Sequences of Four Genes , 2001 .

[88]  Jonathan P. Bollback,et al.  Bayesian model adequacy and choice in phylogenetics. , 2002, Molecular biology and evolution.