Photothermal super resolution imaging: A comparison of different thermographic reconstruction techniques

Abstract This paper presents different super resolution reconstruction techniques to overcome the spatial resolution limits in thermography. Pseudo-random blind structured illumination from a one-dimensional laser array is used as heat source for super resolution thermography. Pulsed thermography measurements using an infrared camera with a high frame rate sampling lead to a huge amount of data. To handle this large data set, thermographic reconstruction techniques are an essential step of the overall reconstruction process. Four different thermographic reconstruction techniques are analyzed based on the Fourier transform amplitude, principal component analysis, virtual wave reconstruction and the maximum thermogram. The application of those methods results in a sparse basis representation of the measured data and serves as input for a compressed sensing based algorithm called iterative joint sparsity (IJOSP). Since the thermographic reconstruction techniques have a high influence on the result of the IJOSP algorithm, this paper highlights their advantages and disadvantages.