Structure of the human multidrug transporter ABCG2

[1]  Henning Stahlberg,et al.  Focus: The interface between data collection and data processing in cryo-EM. , 2017, Journal of structural biology.

[2]  Nikolaus Grigorieff,et al.  Structure of the transporter associated with antigen processing trapped by herpes simplex virus , 2016, eLife.

[3]  Jue Chen,et al.  Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator , 2016, Cell.

[4]  H. Grubmüller,et al.  The pathway to GTPase activation of elongation factor SelB on the ribosome , 2016, Nature.

[5]  B. Sarkadi,et al.  Jump into a New Fold—A Homology Based Model for the ABCG2/BCRP Multidrug Transporter , 2016, PloS one.

[6]  G. A. Frank,et al.  Cryo-EM Analysis of the Conformational Landscape of Human P-glycoprotein (ABCB1) During its Catalytic Cycle , 2016, Molecular Pharmacology.

[7]  E. Lindahl,et al.  Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 , 2016, bioRxiv.

[8]  K. Locher Mechanistic diversity in ATP-binding cassette (ABC) transporters , 2016, Nature Structural &Molecular Biology.

[9]  Jonathan C. Cohen,et al.  Crystal structure of the human sterol transporter ABCG5/ABCG8 , 2016, Nature.

[10]  S. Bates,et al.  The linker region of breast cancer resistance protein ABCG2 is critical for coupling of ATP-dependent drug transport , 2016, Cellular and Molecular Life Sciences.

[11]  J. Reymond,et al.  Structure and mechanism of an active lipid-linked oligosaccharide flippase , 2015, Nature.

[12]  Lawrence Kelley,et al.  Three-dimensional structure of the human breast cancer resistance protein (BCRP/ABCG2) in an inward-facing conformation. , 2015, Acta crystallographica. Section D, Biological crystallography.

[13]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[14]  Kai Zhang,et al.  The structure of the dynactin complex and its interaction with dynein , 2015, Science.

[15]  Alan Brown,et al.  Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions , 2015, Acta crystallographica. Section D, Biological crystallography.

[16]  M. Trauner,et al.  The Role of Canalicular ABC Transporters in Cholestasis , 2014, Drug Metabolism and Disposition.

[17]  B. Sarkadi,et al.  Regulation of the Function of the Human ABCG2 Multidrug Transporter by Cholesterol and Bile Acids: Effects of Mutations in Potential Substrate and Steroid Binding Sites , 2014, Drug Metabolism and Disposition.

[18]  Stephen G Aller,et al.  Refined structures of mouse P-glycoprotein , 2013, Protein science : a publication of the Protein Society.

[19]  R. Henderson,et al.  High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆ , 2013, Ultramicroscopy.

[20]  T. Ishikawa,et al.  Metabolic Interactions of Purine Derivatives with Human ABC Transporter ABCG2: Genetic Testing to Assess Gout Risk , 2013, Pharmaceuticals.

[21]  D. Barford,et al.  Mechanism of farnesylated CAAX protein processing by the integral membrane protease Rce1 , 2013, Nature.

[22]  J. Chai,et al.  Structural basis for a homodimeric ATPase subunit of an ECF transporter , 2013, Protein & Cell.

[23]  L Zhang,et al.  Emerging Transporters of Clinical Importance: An Update From the International Transporter Consortium , 2013, Clinical pharmacology and therapeutics.

[24]  A. Barr,et al.  Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states , 2013, Proceedings of the National Academy of Sciences.

[25]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[26]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[27]  K. Locher,et al.  X-ray structure of the Yersinia pestis heme transporter HmuUV , 2012, Nature Structural &Molecular Biology.

[28]  Shaoxia Chen,et al.  Prevention of overfitting in cryo-EM structure determination , 2012, Nature Methods.

[29]  Sjors H.W. Scheres,et al.  A Bayesian View on Cryo-EM Structure Determination , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[30]  Jian-Ting Zhang,et al.  Human ABCG2: structure, function, and its role in multidrug resistance. , 2012, International journal of biochemistry and molecular biology.

[31]  P. Edwards,et al.  ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter , 2011, Proceedings of the National Academy of Sciences.

[32]  S. Bates,et al.  Gout, genetics and ABC transporters , 2011, F1000 biology reports.

[33]  G. Szakács,et al.  The controversial role of ABC transporters in clinical oncology. , 2011, Essays in biochemistry.

[34]  F. Sharom The P-glycoprotein multidrug transporter. , 2011, Essays in biochemistry.

[35]  M. Gottesman,et al.  Advances in the molecular detection of ABC transporters involved in multidrug resistance in cancer. , 2011, Current pharmaceutical biotechnology.

[36]  S. Bates,et al.  The challenge of exploiting ABCG2 in the clinic. , 2011, Current pharmaceutical biotechnology.

[37]  K. Moitra,et al.  Evolution of ABC transporters by gene duplication and their role in human disease , 2011, Biological chemistry.

[38]  S. Bates,et al.  ABC transporters: unvalidated therapeutic targets in cancer and the CNS. , 2010, Anti-cancer agents in medicinal chemistry.

[39]  T. Andersson,et al.  High-Activity P-Glycoprotein, Multidrug Resistance Protein 2, and Breast Cancer Resistance Protein Membrane Vesicles Prepared from Transiently Transfected Human Embryonic Kidney 293-Epstein-Barr Virus Nuclear Antigen Cells , 2010, Drug Metabolism and Disposition.

[40]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[41]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[42]  T. Ishikawa,et al.  Disruption of N‐linked glycosylation enhances ubiquitin‐mediated proteasomal degradation of the human ATP‐binding cassette transporter ABCG2 , 2009, The FEBS journal.

[43]  Yue Weng,et al.  Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding , 2009, Science.

[44]  S. Bates,et al.  ABCG2: a perspective. , 2009, Advanced drug delivery reviews.

[45]  S. Sligar,et al.  Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. , 2009, Methods in enzymology.

[46]  T. Ishikawa,et al.  Major SNP (Q141K) Variant of Human ABC Transporter ABCG2 Undergoes Lysosomal and Proteasomal Degradations , 2009, Pharmaceutical Research.

[47]  Paul T. Tarr,et al.  ABCG1 and ABCG4 are coexpressed in neurons and astrocytes of the CNS and regulate cholesterol homeostasis through SREBP-2 Published, JLR Papers in Press, October 4, 2007. , 2008, Journal of Lipid Research.

[48]  Narayanan Eswar,et al.  Protein structure modeling with MODELLER. , 2008, Methods in molecular biology.

[49]  B. Poolman,et al.  Membrane reconstitution of ABC transporters and assays of translocator function , 2008, Nature Protocols.

[50]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[51]  S. Sligar,et al.  Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. , 2007, Biochemistry.

[52]  G. Szakács,et al.  Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. , 2006, Physiological reviews.

[53]  R. Dawson,et al.  Structure of a bacterial multidrug ABC transporter , 2006, Nature.

[54]  C. Hrycyna,et al.  The nature of amino acid 482 of human ABCG2 affects substrate transport and ATP hydrolysis but not substrate binding , 2006, Protein science : a publication of the Protein Society.

[55]  T. Litman,et al.  Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues. , 2006, Cancer letters.

[56]  T. Ishikawa,et al.  Identification of cysteine residues critically involved in homodimer formation and protein expression of human ATP-binding cassette transporter ABCG2: a new approach using the flp recombinase system. , 2006, Journal of experimental therapeutics & oncology.

[57]  Y. Sugimoto,et al.  Role of Cys‐603 in dimer/oligomer formation of the breast cancer resistance protein BCRP/ABCG2 , 2005, Cancer science.

[58]  T. Litman,et al.  Identification of Intra- and Intermolecular Disulfide Bridges in the Multidrug Resistance Transporter ABCG2* , 2005, Journal of Biological Chemistry.

[59]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[60]  E. Warkentin,et al.  Structure of the ATPase subunit CysA of the putative sulfate ATP‐binding cassette (ABC) transporter from Alicyclobacillus acidocaldarius , 2005, FEBS letters.

[61]  J. Schuetz,et al.  Function-dependent Conformational Changes of the ABCG2 Multidrug Transporter Modify Its Interaction with a Monoclonal Antibody on the Cell Surface* , 2005, Journal of Biological Chemistry.

[62]  F. Wurm,et al.  Large-scale transient expression of therapeutic proteins in mammalian cells. , 2005, Methods in molecular biology.

[63]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[64]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[65]  Michael Dean,et al.  Mutational analysis of ABCG2: role of the GXXXG motif. , 2004, Biochemistry.

[66]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[67]  Yuichi Sugiyama,et al.  ABCG2 Transports Sulfated Conjugates of Steroids and Xenobiotics* , 2003, Journal of Biological Chemistry.

[68]  I. Catalá,et al.  Frequent expression of the multi‐drug resistance‐associated protein BCRP/MXR/ABCP/ABCG2 in human tumours detected by the BXP‐21 monoclonal antibody in paraffin‐embedded material , 2002, The Journal of pathology.

[69]  Douglas C. Rees,et al.  The E. coli BtuCD Structure: A Framework for ABC Transporter Architecture and Mechanism , 2002, Science.

[70]  M. Hawkins,et al.  Bryostatin-I—An Antineoplastic Treasure from the Deep? , 2002, Cancer biology & therapy.

[71]  J. Schellens,et al.  Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. , 2002, Molecular cancer therapeutics.

[72]  M. Gottesman,et al.  Multidrug resistance in cancer: role of ATP–dependent transporters , 2002, Nature Reviews Cancer.

[73]  T. Litman,et al.  Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. , 2001, Cancer research.

[74]  H. Nakauchi,et al.  The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype , 2001, Nature Medicine.

[75]  A. Rzhetsky,et al.  The human ATP-binding cassette (ABC) transporter superfamily. , 2001, Genome research.

[76]  S. Chifflet,et al.  A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentrations of protein: application to lens ATPases. , 1988, Analytical biochemistry.

[77]  W. Schaffner,et al.  A rapid, sensitive, and specific method for the determination of protein in dilute solution. , 1973, Analytical biochemistry.