Lefties Get It Right When Hearing Tool Sounds

Our ability to manipulate and understand the use of a wide range of tools is a feature that sets humans apart from other animals. In right-handers, we previously reported that hearing hand-manipulated tool sounds preferentially activates a left hemisphere network of motor-related brain regions hypothesized to be related to handedness. Using functional magnetic resonance imaging, we compared cortical activation in strongly right-handed versus left-handed listeners categorizing tool sounds relative to animal vocalizations. Here we show that tool sounds preferentially evoke activity predominantly in the hemisphere opposite the dominant hand, in specific high-level motor-related and multisensory cortical regions, as determined by a separate task involving pantomiming tool-use gestures. This organization presumably reflects the idea that we typically learn the meaning of tool sounds in the context of using them with our dominant hand, such that the networks underlying motor imagery or action schemas may be recruited to facilitate recognition.

[1]  J. Rodd,et al.  Processing Objects at Different Levels of Specificity , 2004, Journal of Cognitive Neuroscience.

[2]  G. Goldenberg,et al.  Tool use and mechanical problem solving in apraxia , 1998, Neuropsychologia.

[3]  D. Perani,et al.  Different neural systems for the recognition of animals and man‐made tools , 1995, Neuroreport.

[4]  R. Passingham,et al.  The Attentional Role of the Left Parietal Cortex: The Distinct Lateralization and Localization of Motor Attention in the Human Brain , 2001, Journal of Cognitive Neuroscience.

[5]  J. Hermsdörfer,et al.  It takes the whole brain to make a cup of coffee: the neuropsychology of naturalistic actions involving technical devices , 2005, Neuropsychologia.

[6]  E. T. Possing,et al.  Human temporal lobe activation by speech and nonspeech sounds. , 2000, Cerebral cortex.

[7]  Scott T. Grafton,et al.  A distributed left hemisphere network active during planning of everyday tool use skills. , 2004, Cerebral cortex.

[8]  D. Norman,et al.  Attention to Action: Willed and Automatic Control of Behavior Technical Report No. 8006. , 1980 .

[9]  R. C. Oldfield THE ASSESSMENT AND ANALYSIS OF HANDEDNESS , 1971 .

[10]  Olaf B. Paulson,et al.  The role of action knowledge in the comprehension of artefacts— A PET study , 2000, NeuroImage.

[11]  Takeshi Hatta,et al.  Handedness and the brain: a review of brain-imaging techniques. , 2007, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[12]  E. Warrington,et al.  Category specific access dysphasia. , 2002, Brain : a journal of neurology.

[13]  J. Mazziotta,et al.  Cortical mechanisms of human imitation. , 1999, Science.

[14]  K. Poeck Ideational apraxia , 2004, Journal of Neurology.

[15]  A. P. Georgopoulos,et al.  Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. , 1993, Science.

[16]  John J. Foxe,et al.  Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. , 2002, Journal of neurophysiology.

[17]  R. Passingham,et al.  Objects automatically potentiate action: an fMRI study of implicit processing , 2003, The European journal of neuroscience.

[18]  R. Passingham,et al.  The Preparation, Execution and Suppression of Copied Movements in the Human Brain , 1996 .

[19]  Gereon R. Fink,et al.  Neural basis of pantomiming the use of visually presented objects , 2004, NeuroImage.

[20]  Gilles Pourtois,et al.  Emotion and attention interactions in social cognition: Brain regions involved in processing anger prosody , 2005, NeuroImage.

[21]  Laurel J. Buxbaum,et al.  Deficient internal models for planning hand–object interactions in apraxia , 2005, Neuropsychologia.

[22]  B. Argall,et al.  Unraveling multisensory integration: patchy organization within human STS multisensory cortex , 2004, Nature Neuroscience.

[23]  D. Na,et al.  Functional magnetic resonance imaging during pantomiming tool-use gestures , 2001, Experimental Brain Research.

[24]  Scott T. Grafton,et al.  Premotor Cortex Activation during Observation and Naming of Familiar Tools , 1997, NeuroImage.

[25]  L. Buxbaum,et al.  The Role of the Dynamic Body Schema in Praxis: Evidence from Primary Progressive Apraxia , 2000, Brain and Cognition.

[26]  Manjit,et al.  Neurology , 1912, NeuroImage.

[27]  G. R. Eichhorn,et al.  Neural correlates of naming animals from their characteristic sounds , 2003, Neuropsychologia.

[28]  D. Norman,et al.  Attention to action: Willed and automatic control , 1980 .

[29]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[30]  Scott H. Johnson-Frey The neural bases of complex tool use in humans , 2004, Trends in Cognitive Sciences.

[31]  S. Ghirlanda,et al.  The evolution of brain lateralization: a game-theoretical analysis of population structure , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[32]  T Shallice,et al.  A Form of Ideational Apraxia as a Delective Deficit of Contention Scheduling , 2001, Cognitive neuropsychology.

[33]  K M Heilman,et al.  Conceptual apraxia from lateralized lesions , 1997, Neurology.

[34]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[35]  Michael S. Gazzaniga,et al.  A Dissociation between the Representation of Tool-use Skills and Hand Dominance: Insights from Left- and Right-handed Callosotomy Patients , 2005, Journal of Cognitive Neuroscience.

[36]  G. Rizzolatti,et al.  Motor and cognitive functions of the ventral premotor cortex , 2002, Current Opinion in Neurobiology.

[37]  J. Moll,et al.  Functional MRI correlates of real and imagined tool-use pantomimes , 2000, Neurology.

[38]  K. Heilman,et al.  Ideational apraxia: A deficit in tool selection and use , 1989, Annals of neurology.

[39]  Karen Emmorey,et al.  Motor-iconicity of sign language does not alter the neural systems underlying tool and action naming , 2004, Brain and Language.

[41]  D. V. van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[42]  M. Chicurel Windows on the brain , 2001, Nature.

[43]  Lisa Koski,et al.  Deconstructing apraxia: understanding disorders of intentional movement after stroke , 2002, Current opinion in neurology.

[44]  R. J. Seitz,et al.  A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐study , 1999, The European journal of neuroscience.

[45]  A. Damasio,et al.  A neural basis for the retrieval of conceptual knowledge , 1997, Neuropsychologia.

[46]  R. Zatorre,et al.  Right temporal cortex is critical for utilization of melodic contextual cues in a pitch constancy task. , 2004, Brain : a journal of neurology.

[47]  K Ugurbil,et al.  Functional magnetic resonance imaging of Broca's area during internal speech. , 1993, Neuroreport.

[48]  I. T. Draper Human Neuropsychology , 1979 .

[49]  K. Zilles,et al.  Crossmodal Processing of Object Features in Human Anterior Intraparietal Cortex An fMRI Study Implies Equivalencies between Humans and Monkeys , 2002, Neuron.

[50]  H. Liepmann Agnosic Disorders: [Über die agnostischen Störungen] , 2001 .

[51]  Kenneth M Heilman,et al.  Apractic agraphia in a patient with normal praxis , 1983, Brain and Language.

[52]  S. Small,et al.  Lateralization of motor circuits and handedness during finger movements , 2001, European journal of neurology.

[53]  J. Decety,et al.  Does visual perception of object afford action? Evidence from a neuroimaging study , 2002, Neuropsychologia.

[54]  S. Frey What Puts the How in Where? Tool Use and the Divided Visual Streams Hypothesis , 2007, Cortex.

[55]  M. Brett,et al.  Actions Speak Louder Than Functions: The Importance of Manipulability and Action in Tool Representation , 2003, Journal of Cognitive Neuroscience.

[56]  B. Argall,et al.  Integration of Auditory and Visual Information about Objects in Superior Temporal Sulcus , 2004, Neuron.

[57]  H Liepmann Agnosic disorders (1908) [classical article]. , 2001, Cortex; a journal devoted to the study of the nervous system and behavior.

[58]  G. Rizzolatti,et al.  Hearing Sounds, Understanding Actions: Action Representation in Mirror Neurons , 2002, Science.

[59]  Sarah H. Creem-Regehr,et al.  Neural representations of graspable objects: are tools special? , 2005, Brain research. Cognitive brain research.

[60]  M. Corballis From mouth to hand: Gesture, speech, and the evolution of right-handedness , 2003, Behavioral and Brain Sciences.

[61]  Jeffrey R Binder,et al.  Human brain regions involved in recognizing environmental sounds. , 2004, Cerebral cortex.

[62]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[63]  Hans-Jochen Heinze,et al.  Scanning silence: Mental imagery of complex sounds , 2005, NeuroImage.

[64]  Scott T. Grafton,et al.  Actions or Hand-Object Interactions? Human Inferior Frontal Cortex and Action Observation , 2003, Neuron.

[65]  F. Lucchelli,et al.  Are Semantic Systems Separately Represented in the Brain? The Case of Living Category Impairment , 1994, Cortex.

[66]  O. Paulson,et al.  Perceptual differentiation and category effects in normal object recognition: a PET study. , 1999, Brain : a journal of neurology.

[67]  Daniel Nettle,et al.  Hand laterality and cognitive ability: A multiple regression approach , 2003, Brain and Cognition.

[68]  Sophie K Scott,et al.  Auditory processing — speech, space and auditory objects , 2005, Current Opinion in Neurobiology.

[69]  M. Tervaniemi,et al.  Lateralization of auditory-cortex functions , 2003, Brain Research Reviews.

[70]  Richard D. Hichwa,et al.  A neural basis for lexical retrieval , 1996, Nature.

[71]  Wolfgang Grodd,et al.  Identification of emotional intonation evaluated by fMRI , 2005, NeuroImage.

[72]  J. Haxby,et al.  Parallel Visual Motion Processing Streams for Manipulable Objects and Human Movements , 2002, Neuron.

[73]  R. Zatorre,et al.  Structure and function of auditory cortex: music and speech , 2002, Trends in Cognitive Sciences.

[74]  D Yves von Cramon,et al.  Premotor cortex in observing erroneous action: an fMRI study. , 2003, Brain research. Cognitive brain research.

[75]  G. Rizzolatti,et al.  Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study , 2001, The European journal of neuroscience.

[76]  Christine M Tipper,et al.  Attentional orienting to graspable objects: what triggers the response? , 2007, Neuroreport.

[77]  T. Griffiths,et al.  What is an auditory object? , 2004, Nature Reviews Neuroscience.

[78]  H. Damasio,et al.  Effects of noun–verb homonymy on the neural correlates of naming concrete entities and actions , 2005, Brain and Language.

[79]  T. Talavage,et al.  Neuroanatomical distribution of five semantic components of verbs: Evidence from fMRI , 2008, Brain and Language.

[80]  R. E Passingham,et al.  Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study , 2003, NeuroImage.

[81]  Alex Martin,et al.  Representation of Manipulable Man-Made Objects in the Dorsal Stream , 2000, NeuroImage.

[82]  C. Price,et al.  Functional Neuroanatomy of the Semantic System: Divisible by What? , 1998, Journal of Cognitive Neuroscience.

[83]  J. Mazziotta,et al.  Left hemisphere motor facilitation in response to manual action sounds , 2004, The European journal of neuroscience.

[84]  G. Schwartz,et al.  Consciousness and Self-Regulation , 1976 .

[85]  S G Kim,et al.  Functional activation in motor cortex reflects the direction and the degree of handedness. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Elizabeth Bates,et al.  Separate neural systems for processing action- or non-action-related sounds , 2005, NeuroImage.

[87]  Sotaro Kita,et al.  Split-brain patients neglect left personal space during right-handed gestures , 2003, Neuropsychologia.

[88]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[89]  E. DeYoe,et al.  Analysis and use of FMRI response delays , 2001, Human brain mapping.

[90]  Stephen M. Rao,et al.  Human Brain Language Areas Identified by Functional Magnetic Resonance Imaging , 1997, The Journal of Neuroscience.

[91]  I. Winkler,et al.  The concept of auditory stimulus representation in cognitive neuroscience. , 1999, Psychological bulletin.

[92]  Angela D Friederici,et al.  � Human Brain Mapping 24:11–20(2005) � Voice Perception: Sex, Pitch, and the Right Hemisphere , 2022 .

[93]  M. Arbib,et al.  Language within our grasp , 1998, Trends in Neurosciences.

[94]  E. T. Possing,et al.  Language lateralization in left-handed and ambidextrous people: fMRI data , 2002, Neurology.

[95]  C. Price The anatomy of language: contributions from functional neuroimaging , 2000, Journal of anatomy.

[96]  Cathy J. Price,et al.  Functional Neuroimaging of Language , 2001 .

[97]  E. DeYoe,et al.  Distinct Cortical Pathways for Processing Tool versus Animal Sounds , 2005, The Journal of Neuroscience.

[98]  K M Heilman,et al.  Conceptual apraxia in Alzheimer's disease. , 1992, Brain : a journal of neurology.

[99]  T. Shallice,et al.  Category specific semantic impairments , 1984 .

[100]  Pascal Belin,et al.  Is voice processing species-specific in human auditory cortex? An fMRI study , 2004, NeuroImage.

[101]  Robert L. Whitwell,et al.  Left handedness does not extend to visually guided precision grasping , 2007, Experimental Brain Research.

[102]  JamesW. Lewis Cortical Networks Related to Human Use of Tools , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[103]  Anne-Lise Giraud,et al.  Distinct functional substrates along the right superior temporal sulcus for the processing of voices , 2004, NeuroImage.

[104]  Robert J Zatorre,et al.  Deficits of musical timbre perception after unilateral temporal-lobe lesion revealed with multidimensional scaling. , 2002, Brain : a journal of neurology.

[105]  R. Cabeza,et al.  Handbook of functional neuroimaging of cognition , 2001 .