CONTROL AND DESIGN OF PEM FUEL CELL-BASED SYSTEMS: Advantages of fuel cell hybrid systems with supercapacitors

Las pilas de combustible son muy ventajosas debido a su alta eficiencia en la conversion de energia y nula contaminacion. En esta tesis se realiza un extenso estudio sobre el control y diseno de sistemas de generacion electrica basados en pilas de combustible. El nucleo principal de la misma son los sistemas hibridos con pilas de combustible y supercapacitores como elementos almacenadores de energia, orientado a aplicaciones automotrices. La determinacion del Grado de Hibridizacion (i.e. la determinacion del tamano de la pila de combustible y del numero de supercapacitores) se realiza mediante una metodologia propuesta con el objetivo de satisfacer requisitos de conductibilidad y consumiendo la menor cantidad de hidrogeno posible.El proceso de diseno comienza con la determinacion de la estructura electrica de generacion del vehiculo y utiliza un modelo detallado realizado en ADVISOR, una herramienta para modelado y estudio de sistemas hibridos. Se analiza el flujo de energia a traves de los componentes del vehiculo cuando el vehiculo sigue diferentes ciclos de conduccion estandares, mostrando las perdidas en cada componente que degradan la eficiencia del sistema y limitan la recuperacion de energia de frenado. Con respecto a la recuperacion de energia, se ha definido y analizado un parametro que cuantifica la cantidad de energia que realmente es reaprovechada: el ratio frenado/hidrogeno.Para controlar el flujo de energia entre la pila de combustible, los almacenadores de energia y la carga electrica, se proponen tres Estrategias de Gestion de Energia (EMS) para Vehiculos Hibridos con Pila de Combustible (FCHVs) basadas en el mapa de eficiencia de la pila y se validan mediante un montaje experimental desarrollado para emular el sistema hibrido. Los resultados de consumo de hidrogeno son comparados con dos referencias: el consumo correspondiente al caso del vehiculo sin hibridizacion y el caso optimo con el menor consumo para el vehiculo propuesto. El consumo optimo se calcula mediante una metodologia propuesta que, a diferencia de otras, evita la discretizacion de las variables de estado.Para operar el sistema eficientemente, la pila de combustible es controlada mediante una metodologia de control, basada en Control de Matriz Dinamica (DMC). Esta metodologia de control utiliza como variables de control el voltaje de compresor y una nueva variable propuesta: la apertura de una valvula proporcional ubicada a la salida del catodo. Los objetivos de control son controlar el exceso de oxigeno en el catodo y el voltaje generado por la pila. Se analiza tanto en regimen estacionario como transitorio las ventajas de emplear esta nueva variable de control y se muestran resultados de funcionamiento por simulacion del controlador ante perturbaciones en la corriente de carga.Por otro lado, se aborda el diagnostico y el control tolerante a fallos del sistema basado en pila de combustible proponiendo una metodologia de diagnostico basada en las sensibilidades relativas de los fallos y se muestra que la estructura de control con las dos variables propuestas tiene buena capacidad de rechazo a fallos en el compresor cuando se controla el exceso de oxigeno en el catodo.

[1]  Anna G. Stefanopoulou,et al.  Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design , 2004 .

[2]  V. Puig,et al.  Control Tolerante a Fallos (Parte I): Fundamentos y Diagnóstico de Fallos. , 2010 .

[3]  Maurice Fadel,et al.  ENERGY MANAGEMENT OF FUEL CELL SYSTEM AND SUPERCAPS ELEMENTS , 2005 .

[4]  W. Steve Shepard,et al.  Experimental investigation of fuel cell dynamic response and control , 2007 .

[5]  Anna G. Stefanopoulou,et al.  Modeling and control for PEM fuel cell stack system , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[6]  J. C. Amphlett,et al.  A model predicting transient responses of proton exchange membrane fuel cells , 1996 .

[7]  Tony Markel,et al.  Energy Storage System Requirements for Hybrid Fuel Cell Vehicles , 2003 .

[8]  Vicenç Puig,et al.  Fault-Tolerant MPC Control of PEM Fuel Cells , 2008 .

[9]  Jun Furukawa,et al.  VRLA Ultrabattery for high-rate partial-state-of-charge operation , 2007 .

[10]  M Maarten Steinbuch,et al.  Rule-based equivalent fuel consumption minimization strategies for hybrid vehicles , 2008 .

[11]  Michel Kinnaert,et al.  Diagnosis and Fault-Tolerant Control , 2006 .

[12]  W. A. Adams,et al.  Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications , 1999 .

[13]  Diego Feroldi,et al.  Performance of diagonal control structures at different operating conditions for polymer electrolyte membrane fuel cells , 2006 .

[14]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[15]  Marina Mastragostino,et al.  Strategies for high-performance supercapacitors for HEV , 2007 .

[16]  E H Law,et al.  Model-based control strategies in the dynamic interaction of air supply and fuel cell , 2004 .

[17]  Alexander Wokaun,et al.  Performance and Operational Characteristics of a Hybrid Vehicle Powered by Fuel Cells and Supercapacitors , 2003 .

[18]  Chung-Yuen Won,et al.  A novel power conversion circuit for cost-effective battery-fuel cell hybrid systems , 2005 .

[19]  W. P. M. H. Heemels,et al.  Energy management strategies for vehicular electric power systems , 2005, IEEE Transactions on Vehicular Technology.

[20]  Zhixiang Liu,et al.  Behavior of PEMFC in starvation , 2006 .

[21]  Daniel R. Lewin,et al.  Model-based Control of Fuel Cells: (1) Regulatory Control , 2004 .

[22]  Anna G. Stefanopoulou,et al.  Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems , 2004 .

[23]  John T. S. Irvine The Bourner lecture: Power sources and the new energy economy , 2004 .

[24]  Giorgio Rizzoni,et al.  Optimizing Control Strategy for Hybrid Fuel Cell Vehicle , 2002 .

[25]  D. Friedman,et al.  Maximizing Direct-Hydrogen PEM Fuel Cell Vehicle Efficiency – Is Hybridization Necessary? , 1999 .

[26]  Tony Markel,et al.  ADVISOR: A SYSTEMS ANALYSIS TOOL FOR ADVANCED VEHICLE MODELING , 2002 .

[27]  Youngkook Lee,et al.  Power Control Strategy for Fuel Cell Hybrid Electric Vehicles , 2003 .

[28]  Aymeric Rousseau,et al.  Fuel economy of hydrogen fuel cell vehicles , 2004 .

[29]  Anna G. Stefanopoulou,et al.  Control-Oriented Modeling and Analysis for Automotive Fuel Cell , 2004 .

[30]  Phatiphat Thounthong,et al.  Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle , 2006 .

[31]  William E. Henson,et al.  Optimal battery/ultracapacitor storage combination , 2008 .

[32]  Ned Mohan,et al.  An approach to connect ultracapacitor to fuel cell powered electric vehicle and emulating fuel cell electrical characteristics using switched mode converter , 2003, IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468).

[33]  J. Pukrushpan Modeling and control of fuel cell systems and fuel processors , 2003 .

[34]  Brant A. Peppley,et al.  A Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel Cells , 2004 .

[35]  Maurizio Biso,et al.  Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes , 2008 .

[36]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[37]  Vicenç Puig,et al.  TOWARDS A BETTER INTEGRATION OF PASSIVE ROBUST INTERVAL-BASED FDI ALGORITHMS , 2006 .

[38]  Mohammad S. Alam,et al.  A dynamic model for a stand-alone PEM fuel cell power plant for residential applications , 2004 .

[39]  M. J. Kellaway,et al.  Lead-acid battery chemistry adapted for hybrid electric vehicle duty , 2007 .

[40]  Fang Wang,et al.  A degradation study of Nafion proton exchange membrane of PEM fuel cells , 2007 .

[41]  Ned Djilali,et al.  Computational model of a PEM fuel cell with serpentine gas flow channels , 2004 .

[42]  L. Carrette,et al.  Fuel Cells - Fundamentals and Applications , 2001 .

[43]  Philip E. Gill,et al.  Practical optimization , 1981 .

[44]  Rolf Isermann,et al.  Model-based fault-detection and diagnosis - status and applications , 2004, Annu. Rev. Control..

[45]  P. Zegers,et al.  Fuel cell commercialization: The key to a hydrogen economy , 2006 .

[46]  Keith Wipke,et al.  Degree of Hybridization Modeling of a Fuel Cell Hybrid Electric Sport Utility Vehicle , 2001 .

[47]  Pierre R. Roberge,et al.  A practical PEM fuel cell model for simulating vehicle power sources , 1995, Proceedings of the Tenth Annual Battery Conference on Applications and Advances.

[48]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[49]  Maurice Fadel,et al.  Modelling and control of a Fuel Cell System and Storage Elements in transport applications , 2005 .

[50]  N. Sivashankar,et al.  Model-based systems analysis of a hybrid fuel cell vehicle configuration , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[51]  Belkacem Ould-Bouamama,et al.  Model based PEM fuel cell state-of-health monitoring via ac impedance measurements , 2006 .

[52]  G. Gigliucci,et al.  Demonstration of a residential CHP system based on PEM fuel cells , 2004 .

[53]  C. C. Chan The state of the art of electric and hybrid vehicles [Prolog] , 2002 .

[54]  Kaushik Rajashekara,et al.  Power conversion and control strategies for fuel cell vehicles , 2003, IECON'03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468).

[55]  Lino Guzzella,et al.  Optimal power management of an experimental fuel cell/supercapacitor-powered hybrid vehicle , 2005 .

[56]  Karl-Heinz Hauer,et al.  Energy utilization and efficiency analysis for hydrogen fuel cell vehicles , 2006 .

[57]  Kaushik Rajashekara,et al.  Propulsion System Strategies for Fuel Cell Vehicles , 2000 .

[58]  Luciane Neves Canha,et al.  An electrochemical-based fuel-cell model suitable for electrical engineering automation approach , 2004, IEEE Transactions on Industrial Electronics.

[59]  F. Philipps,et al.  Dynamic investigation of PEFC stacks in interaction with the air supply system , 2006 .

[60]  Kwi Seong Jeong,et al.  Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle , 2002 .

[61]  Frano Barbir,et al.  PEM Fuel Cells: Theory and Practice , 2012 .

[62]  Mohammad S. Alam,et al.  Dynamic behavior of PEM FCPPs under various load conditions and voltage stability analysis for stand-alone residential applications , 2007 .

[63]  Eduardo F. Camacho,et al.  Introduction to Model Based Predictive Control , 1999 .

[64]  S.F.J. Flipsen,et al.  "Power sources compared: the ultimate truth?" , 2006 .

[65]  M. J. Kellaway Hybrid buses : What their batteries really need to do , 2007 .

[66]  Diego Iannuzzi,et al.  DESIGN CRITERIA OPTIMIZING THE USE OF FUEL CELL SOURCE IN ELECTRIC POWER SYSTEM , 2005 .

[67]  Anna G. Stefanopoulou,et al.  Control of Fuel Cell Breathing : Initial Results on the Oxygen Starvation Problem , 2003 .

[68]  Huei Peng,et al.  Power management and design optimization of fuel cell/battery hybrid vehicles , 2007 .

[69]  Giovanni Pede,et al.  FC vehicle hybridisation: an affordable solution for an energy-efficient FC powered drive train , 2004 .

[70]  Ulrich Eberle,et al.  Fuel cell vehicles: Status 2007 , 2007 .

[71]  Huei Peng,et al.  Model predictive control for starvation prevention in a hybrid fuel cell system , 2004, Proceedings of the 2004 American Control Conference.

[72]  Vicenç Puig,et al.  Passive Robust Fault Detection of Dynamic Processes Using Interval Models , 2008, IEEE Transactions on Control Systems Technology.

[73]  Massimo Ceraolo,et al.  Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description , 2003 .

[74]  C. C. Chan,et al.  The state of the art of electric and hybrid vehicles , 2002, Proc. IEEE.

[75]  P. R. Pathapati,et al.  A new dynamic model for predicting transient phenomena in a PEM fuel cell system , 2005 .

[76]  Wenzhong Gao Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell-ultracapacitor hybrid powertrain , 2005, IEEE Transactions on Vehicular Technology.

[77]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[78]  M.S. Alam,et al.  Dynamic modeling, design, and simulation of a combined PEM fuel cell and ultracapacitor system for stand-alone residential applications , 2006, IEEE Transactions on Energy Conversion.

[79]  R.W. De Doncker,et al.  Optimized energy management for fuelcell-supercap hybrid electric vehicles , 2005, 2005 IEEE Vehicle Power and Propulsion Conference.

[80]  Sigurd Skogestad,et al.  Control of fuel cell power output , 2007 .

[81]  Antonello Monti,et al.  A fuel cell based domestic uninterruptible power supply , 2002, APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.02CH37335).

[82]  January,et al.  Challenges in fuel cell power plant control : The role of system level dynamic models , 2003 .

[83]  Mica Grujicic,et al.  Control of the transient behaviour of polymer electrolyte membrane fuel cell systems , 2004 .

[84]  Jtba John Kessels,et al.  Energy management for automotive power nets , 2007 .

[85]  Rajesh K. Ahluwalia,et al.  Direct hydrogen fuel cell systems for hybrid vehicles , 2005 .

[86]  R. M. Moore,et al.  Pem fuel cell system optimization , 1998 .

[87]  V. Puig,et al.  Control Tolerante a Fallos (Parte II): Mecanismos de Tolerancia y Sistema Supervisor , 2010 .

[88]  Joan M. Ogden,et al.  A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development , 1999 .

[89]  Daniel R. Lewin,et al.  FUEL EFFICIENT MODEL PREDICTIVE CONTROL OF PEM FUEL CELLS , 2005 .

[90]  Marcel Staroswiecki,et al.  Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems , 2001, Autom..

[91]  Aymeric Rousseau,et al.  Fuel economy of hybrid fuel-cell vehicles , 2005 .

[92]  Janos Gertler,et al.  Fault detection and diagnosis in engineering systems , 1998 .

[93]  P. Bénard,et al.  Hydrogen as an energy vector , 2003, Large Engineering Systems Conference on Power Engineering, 2003.

[94]  P. Barrade,et al.  SUPERCAPACITORS FOR PEAK-POWER DEMAND IN FUEL-CELL-DRIVEN CARS , 2001 .

[95]  E. Rideal,et al.  Fuel Cells , 1958, Nature.

[96]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[97]  K. B. Wipke,et al.  ADVISOR 2.1: a user-friendly advanced powertrain simulation using a combined backward/forward approach , 1999 .

[98]  Woong-Chul Yang,et al.  Control Challenges and Methodologies in Fuel Cell Vehicle Development , 1998 .