The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000

We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.

[1]  C. Glover,et al.  Gene expression profiling for hematopoietic cell culture , 2006 .

[2]  J. Dangl,et al.  Nucleotide sequence, functional characterization and evolution of pFKN, a virulence plasmid in Pseudomonas syringae pathovar maculicola , 2003, Molecular microbiology.

[3]  B. Vinatzer,et al.  Identifying type III effectors of plant pathogens and analyzing their interaction with plant cells. , 2003, Current opinion in microbiology.

[4]  Owen White,et al.  The TIGRFAMs database of protein families , 2003, Nucleic Acids Res..

[5]  K. Nelson The complete genome sequence of Pseudomonas putida KT2440 is finally available , 2002 .

[6]  P. Ji,et al.  Biological control of bacterial speck of tomato under field conditions at several locations in north america. , 2002, Phytopathology.

[7]  Alan Collmer,et al.  Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. , 2002, Trends in microbiology.

[8]  J. Doyle,et al.  HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Sheng Yang He,et al.  Identification of novel hrp‐regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome , 2002, Molecular microbiology.

[10]  R. Mittler Oxidative stress, antioxidants and stress tolerance. , 2002, Trends in plant science.

[11]  Alan Collmer,et al.  Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  E. C. Teixeira,et al.  Comparison of the genomes of two Xanthomonas pathogens with differing host specificities , 2002, Nature.

[13]  J. Boch,et al.  Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana , 2002, Molecular microbiology.

[14]  David S Guttman,et al.  A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. , 2002, Science.

[15]  G. Martin,et al.  Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. Weissenbach,et al.  Genome sequence of the plant pathogen Ralstonia solanacearum , 2002, Nature.

[17]  Manor Askenazi,et al.  Genome Sequence of the Plant Pathogen and Biotechnology Agent Agrobacterium tumefaciens C58 , 2001, Science.

[18]  J A Eisen,et al.  The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58 , 2001, Science.

[19]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[20]  M. Simmonds,et al.  Genome sequence of Yersinia pestis, the causative agent of plague , 2001, Nature.

[21]  S. Salzberg,et al.  Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae , 2001, Science.

[22]  A. P. Kloek,et al.  Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. , 2001, The Plant journal : for cell and molecular biology.

[23]  P. Solomon,et al.  The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum , 2001, Planta.

[24]  M. Sandkvist Biology of type II secretion , 2001, Molecular microbiology.

[25]  Ian T. Paulsen,et al.  Complete genome sequence of Caulobacter crescentus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  C. Walsh,et al.  Essential PchG-Dependent Reduction in Pyochelin Biosynthesis of Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[27]  N. W. Davis,et al.  Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 , 2001, Nature.

[28]  G. Sundin,et al.  Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae. , 2000, Microbiology.

[29]  R. Gupta,et al.  The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. , 2000, FEMS microbiology reviews.

[30]  G. Preston Pseudomonas syringae pv. tomato: the right pathogen, of the right plant, at the right time. , 2000, Molecular plant pathology.

[31]  S. S. Hirano,et al.  Bacteria in the Leaf Ecosystem with Emphasis onPseudomonas syringae—a Pathogen, Ice Nucleus, and Epiphyte , 2000, Microbiology and Molecular Biology Reviews.

[32]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[33]  D. A. Palmieri,et al.  The genome sequence of the plant pathogen Xylella fastidiosa , 2000, Nature.

[34]  T. Boller,et al.  FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. , 2000, Molecular cell.

[35]  A. Bultreys,et al.  Production and Comparison of Peptide Siderophores from Strains of Distantly Related Pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG 2352 , 2000, Applied and Environmental Microbiology.

[36]  G. Cornelis,et al.  Assembly and function of type III secretory systems. , 2000, Annual review of microbiology.

[37]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[38]  G. Tsiamis,et al.  Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Chakrabarty,et al.  Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae , 1999, Molecular microbiology.

[40]  D. Gross,et al.  Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases , 1999, Microbiology and Molecular Biology Reviews.

[41]  D. Kaiser,et al.  Type IV pili and cell motility , 1999, Molecular microbiology.

[42]  M. Romantschuk,et al.  Characterization of type IV pilus genes in Pseudomonas syringae pv. tomato DC3000. , 1998, Molecular plant-microbe interactions : MPMI.

[43]  P. Gacesa Bacterial alginate biosynthesis--recent progress and future prospects. , 1998, Microbiology.

[44]  S. Jacquet,et al.  Auxin production is a common feature of most pathovars of Pseudomonas syringae. , 1998, Molecular plant-microbe interactions : MPMI.

[45]  J. Heesemann,et al.  The Yersiniabactin Biosynthetic Gene Cluster of Yersinia enterocolitica: Organization and Siderophore-Dependent Regulation , 1998, Journal of bacteriology.

[46]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[47]  A. Chakrabarty,et al.  Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae , 1997, Journal of bacteriology.

[48]  S. Létoffé,et al.  Protein secretion by Gram-negative bacterial ABC exporters--a review. , 1997, Gene.

[49]  A. Collmer,et al.  Molecular cloning, characterization, and mutagenesis of a pel gene from Pseudomonas syringae pv. lachyrmans encoding a member of the Erwinia chrysanthemi pelADE family of pectate lyases. , 1997, Molecular plant-microbe interactions : MPMI.

[50]  S. Silver,et al.  Bacterial heavy metal resistance: new surprises. , 1996, Annual review of microbiology.

[51]  D. Cuppels,et al.  Molecular and Physiological Characterization of Pseudomonas syringae pv. tomato and Pseudomonas syringae pv. maculicola Strains That Produce the Phytotoxin Coronatine , 1995, Applied and environmental microbiology.

[52]  F. White,et al.  A mutation in the indole-3-acetic acid biosynthesis pathway of Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syringomycin production , 1994, Journal of bacteriology.

[53]  M. Riley,et al.  Functions of the gene products of Escherichia coli , 1993, Microbiological reviews.

[54]  A. Bent,et al.  Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. , 1991, The Plant cell.

[55]  S. Eykyn Microbiology , 1950, The Lancet.

[56]  S. S. Hirano,et al.  Population Biology and Epidemiology of Pseudomonas Syringae , 1990 .

[57]  N. Keen Gene-for-gene complementarity in plant-pathogen interactions. , 1990, Annual review of genetics.

[58]  A. Starratt,et al.  Identification of a chromosomal region required for biosynthesis of the phytotoxin coronatine by Pseudomonas syringae pv. tomato , 1989 .

[59]  C. Bender,et al.  Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato , 1987, Journal of bacteriology.

[60]  N. Panopoulos,et al.  Gene cluster of Pseudomonas syringae pv. "phaseolicola" controls pathogenicity of bean plants and hypersensitivity of nonhost plants , 1986, Journal of bacteriology.

[61]  D. Cuppels Generation and Characterization of Tn5 Insertion Mutations in Pseudomonas syringae pv. tomato , 1986, Applied and environmental microbiology.

[62]  D. Anderson,et al.  Cloning determinants of pathogenesis from Pseudomonas syringae pathovar syringae. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[63]  C. A. Shull Phytopathology , 1929, Botanical Gazette.