Incomplete Localization for Disordered Chiral Strips

We prove that a disordered analog of the Su-Schrieffer-Heeger model exhibits dynamical localization (i.e. the fractional moments condition) at all energies except possibly zero energy, which is singled out by chiral symmetry. Localization occurs at arbitrarily weak disorder, provided it is sufficiently random. If furthermore the hopping probability measures are properly tuned so that the zero energy Lyapunov spectrum does not contain zero, then the system exhibits localization also at that energy, which is of relevance for topological insulators [18]. The method also applies to the usual Anderson model on the strip.

[1]  G. M. Graf Anderson localization and the space-time characteristic of continuum states , 1994 .

[2]  Charles M. Newman,et al.  The distribution of Lyapunov exponents: Exact results for random matrices , 1986 .

[3]  B. Simon Localization in general one dimensional random systems, I. Jacobi matrices , 1985 .

[4]  L. Thomas,et al.  Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators , 1973 .

[5]  I. Jacobi Localization in General One Dimensional Random Systems , 1985 .

[6]  Localization bounds for an electron gas , 1996, cond-mat/9603116.

[7]  G. Stolz,et al.  Localization for Random Block Operators Related to the XY Spin Chain , 2013, 1308.0708.

[8]  H. Yau,et al.  Random Band Matrices in the Delocalized Phase I: Quantum Unique Ergodicity and Universality , 2018, Communications on Pure and Applied Mathematics.

[9]  S. Roth,et al.  Solitons in polyacetylene , 1987 .

[10]  René Carmona,et al.  Anderson localization for Bernoulli and other singular potentials , 1987 .

[11]  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[12]  A. Elgart,et al.  Equality of the Bulk and Edge Hall Conductances in a Mobility Gap , 2004, math-ph/0409017.

[13]  On the Second Mixed Moment of the Characteristic Polynomials of 1D Band Matrices , 2012, 1209.3385.

[14]  Lyapunov Spectra for All Ten Symmetry Classes of Quasi-one-dimensional Disordered Systems of Non-interacting Fermions , 2012, 1212.0322.

[15]  Delocalization in Random Polymer Models , 2003, math-ph/0405024.

[16]  H. Yau,et al.  Universality for a class of random band matrices , 2016, 1602.02312.

[17]  G. M. Graf,et al.  The Bulk-Edge Correspondence for Disordered Chiral Chains , 2018, Communications in Mathematical Physics.

[18]  Random Dirac Operators with Time Reversal Symmetry , 2009, 0902.1935.

[19]  J. Lacroix,et al.  Localization for the Anderson model on a strip with singular potentials , 1990 .

[20]  Jacob Shapiro,et al.  Strongly Disordered Floquet Topological Systems , 2018, Annales Henri Poincaré.

[21]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[22]  S. Sodin,et al.  On the Wegner orbital model , 2016, 1608.02922.

[23]  Characteristic Polynomials for 1D Random Band Matrices from the Localization Side , 2016, 1602.08737.

[24]  M. Aizenman,et al.  Communications in Mathematical Physics Finite-Volume Fractional-Moment Criteria for Anderson Localization , 2001 .

[25]  Izrailev,et al.  Band-random-matrix model for quantum localization in conservative systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Izrailev,et al.  Scaling properties of band random matrices. , 1990, Physical review letters.

[27]  Alain Joye,et al.  Localization Properties of the Chalker–Coddington Model , 2010, 1001.3625.

[28]  P. Stollmann,et al.  Multi-scale analysis implies strong dynamical localization , 1999, math-ph/9912002.

[29]  P. Bougerol,et al.  Products of Random Matrices with Applications to Schrödinger Operators , 1985 .

[30]  Jeffrey Schenker,et al.  Eigenvector Localization for Random Band Matrices with Power Law Band Width , 2008, 0809.4405.

[31]  R. Carmona,et al.  Spectral Theory of Random Schrödinger Operators , 1990 .

[32]  Hervé Kunz,et al.  Sur le spectre des opérateurs aux différences finies aléatoires , 1980 .