Controlling the error growth in long–term numerical integration of perturbed oscillations in one or several frequencies

In this paper we present a simple technique that allows us to limit the error growth in the long–term numerical integration of perturbed multi–dimensional oscillators, while using highly efficient and accurate special multi–step codes. After laying down the theoretical basis of their behaviour, we then illustrate them with some numerical examples, including a case with non–resonant frequencies, seldom found in the related literature.

[1]  José M. Ferrándiz,et al.  Special algorithms to limit the error growth in long-term computation of satellite orbits , 1992 .

[2]  Vimal Singh,et al.  Perturbation methods , 1991 .

[3]  D. G. Bettis,et al.  Stabilization of Cowell's method , 1969 .

[4]  F. Verhulst Nonlinear Differential Equations and Dynamical Systems , 1989 .

[5]  Sylvia Novo,et al.  Improved Bettis Methods for Long-Term Prediction , 1991 .

[6]  D. G. Bettis,et al.  Modified multirevolution integration methods for satellite orbit computation , 1975 .

[7]  Kepler discretization in regular celestial mechanics , 1980 .

[8]  Peter Henrici,et al.  Error propagation for difference methods , 1963 .

[9]  P. Henrici Discrete Variable Methods in Ordinary Differential Equations , 1962 .

[10]  J. M. Ferrandiz,et al.  New numerical method improving the integration of time in KS regularization , 1996 .

[11]  José M. Ferrándiz,et al.  Higher-order variable-step algorithms adapted to the accurate numerical integration of perturbed oscillators , 1998 .

[12]  José M. Ferrándiz,et al.  A General Procedure For the Adaptation of Multistep Algorithms to the Integration of Oscillatory Problems , 1998 .

[13]  D. G. Bettis Stabilization of finite difference methods of numerical integration , 1970 .

[14]  G. Denk A new numerical method for the integration of highly oscillatory second-order ordinary differential equations , 1993 .

[15]  P. Deuflhard A study of extrapolation methods based on multistep schemes without parasitic solutions , 1979 .

[16]  N. Bogolyubov,et al.  Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .

[17]  D. G. Bettis Numerical integration of products of fourier and ordinary polynomials , 1970 .

[18]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[19]  E. Stiefel Linear And Regular Celestial Mechanics , 1971 .

[20]  U. Kirchgraber,et al.  An ODE-solver based on the method of averaging , 1988 .

[21]  VSVO multistep formulae adapted to perturbed second-order differential equations , 1998 .

[22]  Jesús Vigo-Aguiar,et al.  Integración numérica precisa de osciladores perturbados a largo plazo , 1991 .

[23]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[24]  Extended Canonical Transformations Increasing the Number of Variables , 1988 .