Topology of triple-point metals

We discuss and illustrate the appearance of topological fermions and bosons in triple-point metals, where a band crossing of three electronic bands occurs close to the Fermi level. Topological bosons appear in the phonon spectrum of certain triple-point metals, depending on the mass of atoms that form the binary triple-point metal. We first provide a classification of possible triple-point electronic topological phases possible in crystalline compounds and discuss the consequences of these topological phases, seen in Fermi arcs, topological Lifshitz transitions and transport anomalies. Then we show how the topological phase of phonon modes can be extracted and proven for relevant compounds. Finally, we show how the interplay of electronic and phononic topologies in triple-point metals puts these \textit{metallic} materials into the list of the most efficient \textit{metallic} thermoelectrics known to date.

[1]  X. Qi,et al.  Equivalent expression of Z 2 topological invariant for band insulators using the non-Abelian Berry connection , 2011, 1101.2011.

[2]  Holger Bech Nielsen,et al.  The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal , 1983 .

[3]  A. Zunger,et al.  Proposal for III‐V ordered alloys with infrared band gaps , 1991 .

[4]  T. Heikkila,et al.  Nexus and Dirac lines in topological materials , 2015, 1505.03277.

[5]  Jiuyang Lu,et al.  Observation of topological valley transport of sound in sonic crystals , 2016, Nature Physics.

[6]  Zhijun Wang,et al.  Hourglass fermions , 2016, Nature.

[7]  S. Luryi,et al.  Electronic properties of unstrained unrelaxed narrow gap InAsxSb1−x alloys , 2016 .

[8]  Su-Yang Xu,et al.  Weyl semimetals, Fermi arcs and chiral anomalies. , 2016, Nature materials.

[9]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[10]  Hans Wondratschek,et al.  Brillouin-zone database on the Bilbao Crystallographic Server. , 2014, Acta crystallographica. Section A, Foundations and advances.

[11]  C. Felser,et al.  Extremely high conductivity observed in the unconventional triple point fermion material MoP , 2017 .

[12]  J. E. Lee,et al.  Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals , 2016, Nature Communications.

[13]  Yongbin Lee,et al.  Metallic surface electronic state in half-Heusler compounds RPtBi (R= Lu, Dy, Gd) , 2011, 1101.1261.

[14]  Dawson,et al.  Ordering-induced band-gap reduction in InAs1-xSbx (x , 1992, Physical review. B, Condensed matter.

[15]  Liang Fu,et al.  Weyl points and line nodes in gyroid photonic crystals , 2012, Nature Photonics.

[16]  C. Kane,et al.  Topological Classification of Crystalline Insulators through Band Structure Combinatorics , 2016, 1612.02007.

[17]  S. Sarma,et al.  Topological semimetal in a fermionic optical lattice , 2010, Nature Physics.

[18]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[19]  G. Belenky,et al.  Lattice parameter engineering for III–V long wave infrared photonics , 2015 .

[20]  M. Sancho,et al.  Highly convergent schemes for the calculation of bulk and surface Green functions , 1985 .

[21]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Belenky,et al.  Metamorphic InAs1-xSbx/InAs1-ySby superlattices with ultra-low bandgap as a Dirac material , 2017, 1705.02509.

[23]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[24]  M. Sancho,et al.  Quick iterative scheme for the calculation of transfer matrices: application to Mo (100) , 1984 .

[25]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[26]  Sunhee Lee,et al.  Numerical guidelines for setting up a general purpose k.p simulator with applications to quantum dot heterostructures and topological insulators , 2014, 1409.4376.

[27]  Quansheng Wu,et al.  Nodal-chain metals , 2016, Nature.

[28]  M. Troyer,et al.  Topological Phases in InAs_{1-x}Sb_{x}: From Novel Topological Semimetal to Majorana Wire. , 2016, Physical review letters.

[29]  Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd₃As₂. , 2014, Nature materials.

[30]  I. Lifshitz,et al.  On the Theory of the Shubnikov-De Haas Effect , 1958 .

[31]  S. Huber,et al.  Classification of topological phonons in linear mechanical metamaterials , 2016, Proceedings of the National Academy of Sciences.

[32]  B. Satpati,et al.  Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS , 2016, Proceedings of the National Academy of Sciences.

[33]  G. Belenky,et al.  Engineering Dirac Materials: Metamorphic InAs1-xSbx/InAs1-ySby Superlattices with Ultralow Bandgap. , 2018, Nano letters.

[34]  Observation of Weyl nodes in TaAs , 2015, 1503.09188.

[35]  The Emergence of Dirac points in Photonic Crystals with Mirror Symmetry , 2014, Scientific reports.

[36]  C. Kane,et al.  Topological boundary modes in isostatic lattices , 2013, Nature Physics.

[37]  C. Felser,et al.  Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP , 2015, Nature Communications.

[38]  G. B. Stringfellow,et al.  Long-range order in InAsSb , 1989 .

[39]  Topological Photonics , 2014, 1408.6730.

[40]  Anisotropic Fermi surface probed by the de Haas-van Alphen oscillation in proposed Dirac Semimetal TaSb$_{2}$ , 2017, 1706.02878.

[41]  Kenji Watanabe,et al.  Ballistic Majorana nanowire devices , 2016, Nature Nanotechnology.

[42]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[43]  H. Weng,et al.  d Orbital Topological Insulator and Semimetal in the Antifluorite Cu2S Family: Contrasting Spin Helicities, Nodal Box, and Hybrid Surface States. , 2017, The journal of physical chemistry letters.

[44]  G. B. Stringfellow,et al.  Atomic ordering in III/V semiconductor alloys , 1991 .

[45]  J. Christensen,et al.  Topological sound , 2018, Communications Physics.

[46]  Barry Bradlyn,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[47]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[48]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[49]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[50]  F. Miao,et al.  Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2 , 2016, Nature Communications.

[51]  Three-component fermions with surface Fermi arcs in tungsten carbide , 2017, 1706.02664.

[52]  Yiyi Li,et al.  Phononic Weyl nodal straight lines in MgB2 , 2020 .

[53]  D. Sarma,et al.  MoTe2: An uncompensated semimetal with extremely large magnetoresistance , 2017, 1705.07217.

[54]  S. Huber,et al.  Observation of phononic helical edge states in a mechanical topological insulator , 2015, Science.

[55]  Su-Yang Xu,et al.  Observation of Fermi arc surface states in a topological metal , 2015, Science.

[56]  Hai-Zhou Lu,et al.  Quantum transport in topological semimetals under magnetic fields , 2016, Frontiers of Physics.

[57]  Binghai Yan,et al.  Model Hamiltonian and time reversal breaking topological phases of antiferromagnetic half-Heusler materials , 2017, 1704.01138.

[58]  Hu Xu,et al.  Recipe for Dirac Phonon States with a Quantized Valley Berry Phase in Two-Dimensional Hexagonal Lattices. , 2018, Nano letters.

[59]  Daniel P. Arovas,et al.  Topological order and absence of band insulators at integer filling in non-symmorphic crystals , 2012, Nature Physics.

[60]  Andrea Alù,et al.  Floquet topological insulators for sound , 2015, Nature Communications.

[61]  G. Volovik,et al.  The Universe in a Helium Droplet , 2003 .

[62]  Guillermo Avendaño-Franco,et al.  Investigation of novel crystal structures of Bi-Sb binaries predicted using the minima hopping method. , 2016, Physical chemistry chemical physics : PCCP.

[63]  Ya-Xi Shen,et al.  Topologically protected acoustic helical edge states and interface states in strongly coupled metamaterial ring lattices , 2015, 1508.06243.

[64]  Su-Yang Xu,et al.  New fermions on the line in topological symmorphic metals , 2016, 1605.06831.

[65]  Y. Oreg,et al.  Evidence of Majorana fermions in an Al - InAs nanowire topological superconductor , 2012, 1205.7073.

[66]  C. Felser,et al.  Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y) , 2016, Nature Communications.

[67]  Gennady Shvets,et al.  Photonic topological insulators. , 2013, Nature materials.

[68]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[69]  D. Rowe Thermoelectrics Handbook , 2005 .

[70]  Qianhua Xu,et al.  Observation of three-component fermions in the topological semimetal molybdenum phosphide , 2017, Nature.

[71]  C. M. Marcus,et al.  Exponential protection of zero modes in Majorana islands , 2016, Nature.

[72]  C. Felser,et al.  Prediction of Triple Point Fermions in Simple Half-Heusler Topological Insulators. , 2017, Physical review letters.

[73]  Xiaoliang Qi,et al.  Recent developments in transport phenomena in Weyl semimetals , 2013, 1309.4464.

[74]  M. Fang,et al.  Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP , 2015, 1507.05246.

[75]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[76]  Q. Gibson,et al.  The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. , 2016, Nature materials.

[77]  Dong Zhang,et al.  Coexistence of topological nodal lines,Weyl points, and triply degenerate points in TaS , 2017 .

[78]  A. Cracknell,et al.  The mathematical theory of symmetry in solids;: Representation theory for point groups and space groups, , 1972 .

[79]  Yong Xu,et al.  Berry Phase and Topological Effects of Phonons , 2017, 1707.07142.

[80]  G. Mikitik,et al.  The Berry phase in graphene and graphite multilayers , 2008 .

[81]  J. Bell,et al.  A PCAC puzzle: π0→γγ in the σ-model , 1969 .

[82]  Y. Tokura,et al.  Detection of Berry’s Phase in a Bulk Rashba Semiconductor , 2013, Science.

[83]  C. L. Yu,et al.  Observation of Majorana Fermions in a Nb-InSb Nanowire-Nb Hybrid Quantum Device , 2012, 1204.4130.

[84]  Determination of the fundamental and spin-orbit-splitting band gap energies of InAsSb-based ternary and pentenary alloys using mid-infrared photoreflectance , 2008 .

[85]  Z. J. Wang,et al.  A stable three-dimensional topological Dirac semimetal Cd3As2. , 2014, Nature materials.

[86]  Hai-Zhou Lu,et al.  Quantum transport in topological semimetals under magnetic fields (II) , 2018, Frontiers of Physics.