Upconversion luminescence of Er^3^+ in alkali bismuth gallate glasses

Frequency upconversion of Er3+ in alkali bismuth gallate glasses have been investigated. The upconversion mechanisms are discussed, and the dominant mechanisms are excited state absorption for the 2H11/2→4I15/2 and 4S3/2→4I15/2 transitions, and energy transfer upconversion for the 4F9/2→4I15/2 transition. Intense green (around 525–550 nm) and red (around 660 nm) emission bands were observed under 800 nm excitation. At a pump intensity of 15.6 W/cm2, frequency upconversion efficiencies of 2.1×10−2 and 4.8×10−3 were obtained for the green and red emissions, respectively. The results are the highest among doped oxide glasses, and are comparable to those reported for Er3+/Yb3+ codoped fluoride glasses.

[1]  P. Chung,et al.  Praseodymium-doped alkali bismuth gallate glasses , 2000 .

[2]  E. A. Gouveia,et al.  Thermally induced threefold upconversion emission enhancement in nonresonant excited Er3+/Yb3+-codoped chalcogenide glass , 1999 .

[3]  J. Ju,et al.  Mechanisms of upconverted fluorescence in an Er3+ doped LiNbO3 single crystal , 1996 .

[4]  Y. Messaddeq,et al.  Infrared‐to‐visible CW frequency upconversion in Er3+‐doped fluoroindate glasses , 1996 .

[5]  R. Kanno,et al.  Upconversion luminescence of Er3+ in CdX2 system glasses (X=Cl, Br, I) , 1995 .

[6]  A. S. Gouveia-Neto,et al.  Upconversion fluorescence spectroscopy of Er3+/Yb3+-doped heavy metal Bi2O3Na2ONb2O5GeO2 glass , 1998 .

[7]  H. Poignant,et al.  Tunable green upconversion erbium fibre laser , 1992 .

[8]  Steven H. Morgan,et al.  Host‐dependent optical transitions of Er3+ ions in lead–germanate and lead‐tellurium‐germanate glasses , 1996 .

[9]  R. S. Quimby,et al.  Efficient frequency up-conversion via energy transfer in fluoride glasses , 1987 .

[10]  Younes Messaddeq,et al.  Frequency upconversion in Er3+/Yb3+-codoped chalcogenide glass , 1998 .

[11]  Xin Lu,et al.  Upconversion fluorescence of TeO2PbO-based oxide glasses containing Er3+ ions , 1992 .

[12]  R. Kanno,et al.  Upconversion luminescence of Er3+ in chloride glasses based on ZnCl2 or CdCl2 , 1994 .

[13]  K. Kojima,et al.  Green upconversion fluorescence in Er3+‐doped Ta2O5 heated gel , 1995 .

[14]  Anne C. Tropper,et al.  CW room temperature upconversion lasing at blue, green and red wavelengths in infrared-pumped Pr3+-doped fluoride fibre , 1991 .

[15]  R. Kanno,et al.  Up-conversion characteristics of Er3+ in transparent oxyfluoride glass–ceramics , 1998 .

[16]  M. J. Suscavage,et al.  Multiphonon relaxation and infrared‐to‐visible conversion of Er3+ and Yb3+ ions in barium‐thorium fluoride glass , 1987 .

[17]  Yoshiaki Miyajima,et al.  Rare Earth-Doped Fluoride Fiber Amplifiers and Fiber Lasers , 1994 .

[18]  N. Peyghambarian,et al.  NONRADIATIVE DECAY PROCESSES AND MECHANISMS OF FREQUENCY UPCONVERSION OF ER3+ IN ZRF4-BAF2-LAF3 GLASS , 1997 .

[19]  M. Chamarro,et al.  Infrared to visible upconversion of Er3+ ions in Yb3+ doped fluorohafnate glasses , 1990 .

[20]  Setsuhisa Tanabe,et al.  Upconversion fluorescences of TeO2- and Ga2O3-based oxide glasses containing Er3+ , 1990 .

[21]  D. F. de Sousa,et al.  Er3+:Yb3+ codoped lead fluoroindogallate glasses for mid infrared and upconversion applications , 1999 .

[22]  K. Soga,et al.  UPCONVERSION MECHANISM IN ER3+-DOPED FLUOROZIRCONATE GLASSES UNDER 800 NM EXCITATION , 1999 .