A critical history of electric propulsion: The first fifty years (1906-1956)

∗Chair of AIAA’s Electric Propulsion Technical Committee, 2002-2004. Associate Fellow AIAA. Chief Scientist at Princeton University’s Electric Propulsion and Plasma Dynamics Laboratory (EPPDyL). Associate Professor, Applied Physics Group, MAE Department. e-mail: choueiri@princeton.edu. †Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Ft. Lauderdale, FL. Copyright c © 2004 by the author. Published by the AIAA with permission. Also published in the Journal of Propulsion and Power, Vol. 20, No. 2, pp. 193–203, MarchApril 2004. When writing history, it is tempting to identify thematic periods in the often continuous stream of events under review and label them as “eras”, or to point to certain achievements and call them “milestones”. Keeping in mind that such demarcations and designations inevitably entail some arbitrariness, we shall not resist this temptation. Indeed, the history of electric propulsion (EP), which now spans almost a full century, particularly lends itself to a subdivision that epitomizes the progress of the field from its start as the dream realm of a few visionaries, to its transformation into the concern of large corporations. We shall therefore idealize the continuous history of the field as a series of five essentially consecutive eras:

[1]  S. B. Die Rakete zu den Planetenräumen , 1924, Nature.

[2]  J. Davenport Editor , 1960 .

[3]  E. Stuhlinger Possibilities of Electrical Space Ship Propulsion , 1955 .

[4]  C. D. Child,et al.  Discharge From Hot Cao , 1911 .

[5]  Lyman Spitzer Interplanetary Travel Between Satellite Orbits , 1952 .

[6]  Hsue-shen Tsien,et al.  Take-Off from Satellite Orbit , 1953 .

[7]  Mohamed S. El-Genk,et al.  Energy Conversion Options for Advanced Radioisotope Power Systems , 2003 .

[8]  Martin Summerfield,et al.  Physics of Rockets: Dynamics of Long Range Rockets , 1947 .

[9]  Herbert Radd,et al.  A Survey of Spatial Problems: Some Tentative Solutions in Space Travel , 1945 .

[10]  A. Theodore Finkelstein,et al.  A High Efficiency Ion Source , 1940 .

[11]  R. Jahn,et al.  Physics of Electric Propulsion , 1968 .

[12]  D. C. Romick Basic Design Principles Applicable to Reaction-Propelled Space Vehicles , 1955 .

[13]  George P. Sutton,et al.  History of liquid propellant rocket engines in the United States , 2003 .

[14]  W. Mcd An Autobiography , 1904, Nature.

[15]  Edgar Y. Choueiri,et al.  ELECTRIC PROPULSION. , 1888, Science.

[16]  Irving Langmuir,et al.  The Effect of Space Charge and Residual Gases on Thermionic Currents in High Vacuum , 1913 .

[17]  Mises HERMANN OBERTH, Wege zur Raumschiffahrt. Mit 4 Tafeln und 159 Abb. 3. Auflage von »Die Rakete zu den Planetenräumen«. Verlag R. Oldenbourg, München und Berlin 1929. XI + 431 S. Preis 20 M . , 1929 .

[18]  John G. Trump,et al.  REVIEW ARTICLES: Electrostatic generators for the acceleration of charged particles , 1947 .

[19]  Hermann Oberth,et al.  Wege zur Raumschiffahrt. , 1929 .

[20]  A. E. Cameron,et al.  An Ion ``Velocitron'' , 1948 .

[21]  R. Hall,et al.  High Frequency Proton Source , 1948 .

[22]  George P. Sutton,et al.  History of Liquid-Propellant Rocket Engines in Russia, Formerly the Soviet Union , 2003 .

[23]  S. Oleson,et al.  Electric Propulsion for Project Prometheus , 2003 .

[24]  John W. Barnett A review of Soviet plasma engine development , 1990 .

[25]  V. A. Sandborn Ion propulsion for space flight , 1964 .

[26]  R. Setlow A high current ion source. , 1949, The Review of scientific instruments.

[27]  G. DeFriese,et al.  The New York Times , 2020, Publishing for Libraries.