A Quasi-Dense Matching Approach and its Calibration Application with Internet Photos

This paper proposes a quasi-dense matching approach to the automatic acquisition of camera parameters, which is required for recovering 3-D information from 2-D images. An affine transformation-based optimization model and a new matching cost function are used to acquire quasi-dense correspondences with high accuracy in each pair of views. These correspondences can be effectively detected and tracked at the sub-pixel level in multiviews with our neighboring view selection strategy. A two-layer iteration algorithm is proposed to optimize 3-D quasi-dense points and camera parameters. In the inner layer, different optimization strategies based on local photometric consistency and a global objective function are employed to optimize the 3-D quasi-dense points and camera parameters, respectively. In the outer layer, quasi-dense correspondences are resampled to guide a new estimation and optimization process of the camera parameters. We demonstrate the effectiveness of our algorithm with several experiments.

[1]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[2]  Luc Van Gool,et al.  Combined Depth and Outlier Estimation in Multi-View Stereo , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[3]  Pascal Fua,et al.  On benchmarking camera calibration and multi-view stereo for high resolution imagery , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[5]  Guanghui Wang,et al.  Stratification Approach for 3-D Euclidean Reconstruction of Nonrigid Objects From Uncalibrated Image Sequences , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  Martin D. Levine,et al.  Computer determination of depth maps , 1973, Comput. Graph. Image Process..

[7]  Vincent Lepetit,et al.  A fast local descriptor for dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[9]  Andrew Zisserman,et al.  Multi-view Matching for Unordered Image Sets, or "How Do I Organize My Holiday Snaps?" , 2002, ECCV.

[10]  Hujun Bao,et al.  Robust Metric Reconstruction from Challenging Video Sequences , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Manolis I. A. Lourakis,et al.  SBA: A software package for generic sparse bundle adjustment , 2009, TOMS.

[12]  Juho Kannala,et al.  Quasi-Dense Wide Baseline Matching Using Match Propagation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Luis Salgado,et al.  Depth-Color Fusion Strategy for 3-D Scene Modeling With Kinect , 2013, IEEE Transactions on Cybernetics.

[14]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[15]  Stepán Obdrzálek,et al.  Local affine frames for wide-baseline stereo , 2002, Object recognition supported by user interaction for service robots.

[16]  Michael Goesele,et al.  Multi-View Stereo for Community Photo Collections , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[17]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[18]  Philippe Bekaert,et al.  Local Stereo Matching with Segmentation-based Outlier Rejection , 2006, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).

[19]  Olga Veksler,et al.  Fast variable window for stereo correspondence using integral images , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[20]  Alain Crouzil,et al.  Dense matching using correlation: new measures that are robust near occlusions , 2003, BMVC.

[21]  Tardi Tjahjadi,et al.  Efficient three-dimensional metric object modeling from uncalibrated image sequences , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[22]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Richard Szeliski,et al.  Handling occlusions in dense multi-view stereo , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[24]  A. Aydin Alatan,et al.  3-D Rigid Body Tracking Using Vision and Depth Sensors , 2013, IEEE Transactions on Cybernetics.

[25]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Harry Shum,et al.  Cooperative segmentation and stereo using perspective space search , 2004 .

[27]  Long Quan,et al.  A quasi-dense approach to surface reconstruction from uncalibrated images , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  S. Birchfiled A Pixel Dissimilarity Measure That Is Insensitive to Image Sampling , 1998 .

[29]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[30]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[31]  Ye Zhang,et al.  On 3-D scene flow and structure recovery from multiview image sequences , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[32]  Rachid Deriche,et al.  Dense Disparity Map Estimation Respecting Image Discontinuities: A PDE and Scale-Space BasedApproach , 2002, MVA.

[33]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[34]  Ingemar J. Cox,et al.  A maximum-flow formulation of the N-camera stereo correspondence problem , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[35]  Reinhard Koch,et al.  Visual Modeling with a Hand-Held Camera , 2004, International Journal of Computer Vision.

[36]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[37]  Darius Burschka,et al.  Advances in Computational Stereo , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Tomás Pajdla,et al.  Robust Rotation and Translation Estimation in Multiview Reconstruction , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[41]  Jiri Matas,et al.  Towards Complete Free-Form Reconstruction of Complex 3D Scenes from an Unordered Set of Uncalibrated Images , 2004, ECCV Workshop SMVP.

[42]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[43]  Matthew A. Brown,et al.  Unsupervised 3D object recognition and reconstruction in unordered datasets , 2005, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05).

[44]  Luc Van Gool,et al.  Dense matching of multiple wide-baseline views , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[45]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.