The promise of optical NMR spectroscopy for experimental aqueous geochemistry

New quantum technologies are being adapted to detect extraordinarily small magnetic fields. The signals are derived from the stimulated emission of light from single-atom defects in diamonds. The intensity of light reports the spin state of the electrons in the color center. The physics is relevant to geochemists because it points to a means of conducting NMR experiments on solutions in diamond-anvil cells. New quantum technologies are being adapted to detect extraordinarily small magnetic fields. The signals are derived from the stimulated emission of light from single-atom defects in diamonds. The intensity of light reports the spin state of the electrons in the color center. The physics is relevant to geochemists because it points to a means of conducting NMR experiments on solutions in diamond-anvil cells. Because the method is so sensitive, it can detect signals in subnanoliter volumes, making work at elevated temperatures and pressures possible, and also on solutions that are dangerous in larger volumes.

[1]  M. Shirakawa,et al.  Tracking the 3D Rotational Dynamics in Nanoscopic Biological Systems. , 2020, Journal of the American Chemical Society.

[2]  R. Fu,et al.  Paleomagnetic evidence for modern-like plate motion velocities at 3.2 Ga , 2020, Science Advances.

[3]  Victoria A. Norman,et al.  Novel color center platforms enabling fundamental scientific discovery , 2020, InfoMat.

[4]  R. Hamers,et al.  Selective imaging of diamond nanoparticles within complex matrices using magnetically induced fluorescence contrast , 2020 .

[5]  Mikael P. Backlund,et al.  Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy , 2019, Nature Protocols.

[6]  T. Shibauchi,et al.  Measuring magnetic field texture in correlated electron systems under extreme conditions , 2018, Science.

[7]  J. Roch,et al.  Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers , 2018, Science.

[8]  R. Jeanloz,et al.  Imaging stress and magnetism at high pressures using a nanoscale quantum sensor , 2018, Science.

[9]  T. Gaebel,et al.  Phase-Encoded Hyperpolarized Nanodiamond for Magnetic Resonance Imaging , 2017, Scientific Reports.

[10]  M. Plenio,et al.  Blueprint for nanoscale NMR , 2017, Scientific Reports.

[11]  E. A. Lima,et al.  Secondary magnetite in ancient zircon precludes analysis of a Hadean geodynamo , 2018, Proceedings of the National Academy of Sciences.

[12]  D. Suter,et al.  Orientation-independent room temperature optical 13C hyperpolarization in powdered diamond , 2018, Science Advances.

[13]  Ronald L. Walsworth,et al.  High-resolution magnetic resonance spectroscopy using a solid-state spin sensor , 2017, Nature.

[14]  T. Meier At Its Extremes : NMR at Giga-Pascal Pressures , 2018 .

[15]  W. Casey,et al.  Steps to achieving high-resolution NMR spectroscopy on solutions at GPa pressure , 2017, American Journal of Science.

[16]  E. A. Lima,et al.  Micrometer‐scale magnetic imaging of geological samples using a quantum diamond microscope , 2017, 1707.06714.

[17]  J. Wrachtrup,et al.  Nanoscale nuclear magnetic resonance with chemical resolution , 2017, Science.

[18]  Jan Meijer,et al.  Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor , 2017, Science.

[19]  Ronald L. Walsworth,et al.  Nanodiamond-enhanced MRI via in situ hyperpolarization , 2017, Nature Communications.

[20]  T. Gaebel,et al.  Hyperpolarized Nanodiamond Surfaces. , 2016, Journal of the American Chemical Society.

[21]  E. A. Lima,et al.  Evaluating the paleomagnetic potential of single zircon crystals using the Bishop Tuff , 2016, 1605.08479.

[22]  J. Crocker,et al.  Evolution of hyperfine parameters across a quantum critical point in CeRhIn 5 , 2015, 1507.05118.

[23]  R. Weissleder,et al.  Single cell magnetic imaging using a quantum diamond microscope , 2015, Nature Methods.

[24]  N. Yao,et al.  State-selective intersystem crossing in nitrogen-vacancy centers , 2014, 1412.4865.

[25]  L. Hollenberg,et al.  Electronic properties and metrology applications of the diamond NV- center under pressure. , 2013, Physical review letters.

[26]  M. D. Lukin,et al.  Optical magnetic imaging of living cells , 2013, Nature.

[27]  R. Hanson,et al.  Diamond NV centers for quantum computing and quantum networks , 2013 .

[28]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[29]  J. Meijer,et al.  Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume , 2013, Science.

[30]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[31]  T. Taminiau,et al.  Detection and control of individual nuclear spins using a weakly coupled electron spin. , 2012, Physical review letters.

[32]  Lukin,et al.  Magnetic field imaging with nitrogen-vacancy ensembles , 2011, 1207.3339.

[33]  Efthimios Kaxiras,et al.  Properties of nitrogen-vacancy centers in diamond: the group theoretic approach , 2010, 1010.1338.

[34]  F. Dolde,et al.  High sensitivity magnetic imaging using an array of spins in diamond. , 2010, The Review of scientific instruments.

[35]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[36]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[37]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[38]  Neil B. Manson,et al.  Optically detected spin coherence of the diamond N-V centre in its triplet ground state , 1988 .