Superhyperfine Structure in EPR of Cr-Doped SnO2 Single Crystals

The electron paramagnetic resonance (EPR) of Cr-doped SnO 2 crystals has been studied using an X-band spectrometer at room temperature. In the as-grown crystals, two distinct EPR spectra, designated as (EPR) I and (EPR) II , with different values of the spin-Hamiltonian parameters have been observed in our experiments. The lines of these spectra are superhyperfine-broadened with superhyperfine structure (shfs) of neighboring Sn nuclei. The line-intensity ratio of the shfs for the (EPR) II has been 1.000:0.477:0.141:0.120:0.195:0.096:0.040. The analysis of the line-intensity ratio of the shfs shows that the (EPR) II is not due to Cr 3+ ions in the interstitial positions, but is attributed to Cr 3+ in the substitutional sites with a rhombic distortion in SnO 2 crystal.

[1]  J. P. Marton,et al.  Physical Properties of SnO2 Materials II . Electrical Properties , 1976 .

[2]  J. P. Marton,et al.  Physical Properties of SnO2 Materials I . Preparation and Defect Structure , 1976 .

[3]  H. H. Pieper,et al.  Hyperfine and superhyperfine EPR spectra of Tc(IV) and Re(IV) in tin dioxide single crystals , 1975 .

[4]  R. Nakata ESR Study of SnO 2 Doped with Nickel Ions , 1974 .

[5]  M. Stapelbroek,et al.  Paramagnetic resonance of Cr 3+ in tetragonal GeO 2 , 1974 .

[6]  R. Bartram,et al.  Hyperfine, Superhyperfine, and Quadrupole Interactions forV4+in Tetragonal GeO2 , 1973 .

[7]  Z. Šroubek,et al.  Paramagnetic Resonance of Interstitial V4+ in TiO2 , 1972 .

[8]  W. Rhein,et al.  ENDOR investigations on the superhyperfine interaction of Fe3+ in SnO2 , 1972 .

[9]  R. Bartkowski,et al.  Electron paramagnetic resonance of a new Fe3+ center in SnO2 , 1972 .

[10]  Y. Kazumata,et al.  Electron Spin Resonance on Rutile (TiO2) with Cobalt Ions Combined with Oxygen Vacancies , 1971 .

[11]  Y. Miyako Observation of the Substitutional Co 2+ Ions Combined with the Interstitial Ti 4+ Ions in Rutile , 1971 .

[12]  S. Shionoya,et al.  Electrical and Optical Properties of Reduced Stannic Oxide Crystals , 1971 .

[13]  E. E. Kohnke,et al.  EPR of Ni3+ in stannic oxide and oxidation-reduction effects on the epr spectra observed in flux-grown crystals , 1970 .

[14]  M. Date,et al.  Electron Spin Resonance of Cr3+ Ions Coupled with Oxygen Vacancies in Rutile , 1969 .

[15]  Y. Miyako Electron spin resonance of Co2+ ions combined with defects in rutile (TiO2) , 1967 .

[16]  R. Summitt,et al.  Electron-Paramagnetic-Resonance and Optical Spectra of Cr 3 + in Sn O 2 Single Crystals , 1967 .

[17]  S. Shionoya,et al.  Vapor Reaction Growth of SnO2 Single Crystals and Their Properties , 1965 .

[18]  I. Chen,et al.  Mechanism of Superhyperfine Structure in SnO2:V4+ , 1965 .

[19]  P. B. Dorain,et al.  Spin Resonance of SnO2:V and the Vanadium 3d Electron Orbital , 1965 .

[20]  W. From Electron Paramagnetic Resonance ofCr3+in SnO2 , 1963 .

[21]  H. Gerritsen,et al.  Paramagnetic Resonance of Ni 2+ and Ni 3+ in TiO 2 , 1962 .

[22]  H. Gerritsen,et al.  Chromium‐Doped Titania as a Maser Material , 1960 .

[23]  H. Gerritsen,et al.  Fine Structure, Hyperfine Structure, and Relaxation Times of Cr 3 + in Ti O 2 (Rutile) , 1959 .