Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001)

In a fundamental cross-sectional scanning tunneling microscopy investigation on epitaxially grown GaP layers on a Si(001) substrate, differently oriented antiphase boundaries are studied. They can be identified by a specific contrast and by surface step edges starting/ending at the position of an antiphase boundary. Moreover, a change in the atomic position of P and Ga atoms along the direction of growth is observed in agreement with the structure model of antiphase boundaries in the GaP lattice. This investigation opens the perspective to reveal the orientation and position of the antiphase boundaries at the atomic scale due to the excellent surface sensitivity of this method.

[1]  L. Largeau,et al.  Abrupt GaP/Si hetero-interface using bistepped Si buffer , 2015 .

[2]  W. Masselink,et al.  Lattice-engineered Si1−xGex-buffer on Si(001) for GaP integration , 2014, 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM).

[3]  M. Lee,et al.  InGaAs/GaP quantum dot light-emitting diodes on Si , 2013 .

[4]  K. Gries,et al.  Atomic structure of (110) anti-phase boundaries in GaP on Si(001) , 2013 .

[5]  H. Eisele,et al.  Spatial structure of In0.25Ga0.75As/GaAs/GaP quantum dots on the atomic scale , 2013 .

[6]  C. Robert,et al.  Structural and optical analyses of GaP/Si and (GaAsPN/GaPN)/GaP/Si nanolayers for integrated photonics on silicon , 2012 .

[7]  K. Volz,et al.  Influence of crystal polarity on crystal defects in GaP grown on exact Si (001) , 2011 .

[8]  H. Eisele,et al.  Direct measurement of the band gap and Fermi level position at InN(112¯0) , 2011 .

[9]  Wiebke Witte,et al.  GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration , 2011 .

[10]  S. Brückner,et al.  Surface preparation of Si(1 0 0) by thermal oxide removal in a chemical vapor environment , 2011 .

[11]  S. Brückner,et al.  Indirect in situ characterization of Si(1 0 0) substrates at the initial stage of III–V heteroepitaxy , 2011 .

[12]  H. Eisele,et al.  Atomic Structure of Buried InAs Sub-Monolayer Depositions in GaAs , 2010 .

[13]  H. Döscher,et al.  In situ reflection anisotropy spectroscopy analysis of heteroepitaxial GaP films grown on Si(100) , 2010 .

[14]  O. Rubel,et al.  Formation Energies of Antiphase Boundaries in GaAs and GaP: An ab Initio Study , 2009, International journal of molecular sciences.

[15]  Wolfgang Stolz,et al.  Monolithic integration of Ga(NAsP)/(BGa)P multi-quantum well structures on (0 0 1) silicon substrate by MOVPE , 2008 .

[16]  H. Döscher,et al.  In situ verification of single-domain III-V on Si(100) growth via metal-organic vapor phase epitaxy , 2008 .

[17]  V. Narayanan,et al.  Antiphase boundaries in GaP layers grown on (001) Si by chemical beam epitaxy , 2002 .

[18]  Y. Fujimoto,et al.  Dislocation-free GaAsyP1−x−yNx/GaP0.98N0.02 quantum-well structure lattice- matched to a Si substrate , 2001 .

[19]  J. Chu,et al.  Scanning tunneling microscopy of in situ cleaved and hydrogen passivated Si(110) cross-sectional surfaces , 1995 .

[20]  Takashi Jimbo,et al.  Characterization of Antiphase Domain in GaP on Misoriented (001) Si Substrate Grown by Metalorganic Chemical Vapor Deposition , 1993 .

[21]  Hadis Morkoç,et al.  Gallium arsenide and other compound semiconductors on silicon , 1990 .

[22]  H. M. Hubbard Photovoltaics Today and Tomorrow , 1989, Science.

[23]  Herbert Kroemer,et al.  Polar-on-nonpolar epitaxy , 1987 .

[24]  S. Wright,et al.  Molecular beam epitaxial growth of GaP on Si , 1984 .