New exact Jacobi elliptic functions solutions for the generalized coupled Hirota-Satsuma KdV system

Abstract In this paper, an generalized Jacobi elliptic functions expansion method with computerized symbolic computation is used for constructing more new exact Jacobi elliptic functions solutions of the generalized coupled Hirota–Satsuma KdV system. As a result, eight families of new doubly periodic solutions are obtained by using this method, some of these solutions are degenerated to solitary wave solutions and triangular functions solutions in the limit cases when the modulus of the Jacobi elliptic functions m  → 1 or 0, which shows that the applied method is more powerful and will be used in further works to establish more entirely new solutions for other kinds of nonlinear partial differential equations arising in mathematical physics.

[1]  Yang Feng,et al.  A new auxiliary function method for solving the generalized coupled Hirota-Satsuma KdV system , 2008, Appl. Math. Comput..

[2]  Wenhua Huang,et al.  Jacobi elliptic function solutions of the Ablowitz–Ladik discrete nonlinear Schrödinger system , 2009 .

[3]  Huicheng Yin,et al.  A note on the elliptic equation method , 2008 .

[4]  Xing-Biao Hu,et al.  Application of Hirota's bilinear formalism to the Toeplitz lattice—some special soliton-like solutions , 2002 .

[5]  R. Hirota,et al.  Soliton solutions of a coupled Korteweg-de Vries equation , 1981 .

[6]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[7]  Liping Wu,et al.  Travelling wave solutions for the generalized coupled Hirota-Satsuma KdV system , 2006, Appl. Math. Comput..

[8]  Zhenya Yan,et al.  The extended Jacobian elliptic function expansion method and its application in the generalized Hirota–Satsuma coupled KdV system , 2003 .

[9]  Shaoyong Lai,et al.  The Jacobi elliptic function solutions to a generalized Benjamin-Bona-Mahony equation , 2009, Math. Comput. Model..

[10]  Hong Zhao A new algebraic procedure to construct exact solutions of nonlinear differential-difference equations , 2010, Appl. Math. Comput..

[11]  Mingliang Wang,et al.  Periodic wave solutions to a coupled KdV equations with variable coefficients , 2003 .

[12]  Engui Fan,et al.  Double periodic solutions with Jacobi elliptic functions for two generalized Hirota–Satsuma coupled KdV systems , 2002 .

[13]  Robert Conte,et al.  Link between solitary waves and projective Riccati equations , 1992 .

[14]  Engui Fan,et al.  Two new applications of the homogeneous balance method , 2000 .

[15]  Han Jia-hua,et al.  The extended expansion method for Jacobi elliptic function and new exact periodic solutions of Zakharov equations , 2007 .

[16]  J. Weiss,et al.  The sine‐Gordon equations: Complete and partial integrability , 1984 .

[17]  Zuntao Fu,et al.  New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations , 2001 .

[18]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[19]  Lixin Tian,et al.  Backlund Transformation and N-soliton-like Solutions to the Combined KdV-Burgers Equation with Variable Coefficients , 2006 .

[20]  Qi Wang,et al.  An extended Jacobi elliptic function rational expansion method and its application to (2 + 1)-dimensional dispersive long wave equation , 2005 .

[21]  E. Fan,et al.  Extended tanh-function method and its applications to nonlinear equations , 2000 .

[22]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[23]  Wenxiu Ma,et al.  The Hirota-Satsuma Coupled KdV Equation and a Coupled Ito System Revisited , 2000 .

[24]  Q. P. Liu,et al.  New Darboux transformation for Hirota–Satsuma coupled KdV system , 2002 .

[25]  Qi Wang,et al.  The extension of the Jacobi elliptic function rational expansion method , 2007 .

[26]  Yan-Ze Peng,et al.  Exact travelling wave solutions for the Zakharov-Kuznetsov equation , 2008, Appl. Math. Comput..

[27]  Yan Zhen-Ya,et al.  New Explicit Solitary Wave Solutions and Periodic Wave Solutions for the Generalized Coupled Hirota Satsuma KdV System , 2002 .

[28]  Elsayed M. E. Zayed,et al.  Some applications of the (G'/G)-expansion method to non-linear partial differential equations , 2009, Appl. Math. Comput..

[29]  Baojian Hong,et al.  New Jacobi elliptic functions solutions for the variable-coefficient mKdV equation , 2009, Appl. Math. Comput..

[30]  Lixin Tian,et al.  New explicit exact solutions for the generalized coupled Hirota-Satsuma KdV system , 2007, Comput. Math. Appl..

[31]  Dogan Kaya,et al.  Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation , 2004, Appl. Math. Comput..

[32]  Khaled A. Gepreel,et al.  On the solitary wave solutions for nonlinear Hirota–Satsuma coupled KdV of equations , 2004 .

[33]  Dianchen Lu,et al.  New exact solutions for the (2+1)-dimensional generalized Broer-Kaup system , 2008, Appl. Math. Comput..