Hybrid graphene plasmonic waveguide modulators

The unique optical and electronic properties of graphene allow one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene with sub-wavelength field confinement of plasmonic/metallic structures is not fully realized. Here we report fabrication and study of hybrid graphene-plasmonic modulators. We consider several types of modulators and identify the most promising one for light modulation at telecom and near-infrared. Our proof-of-concept results pave the way towards on-chip realization of efficient graphene-based active plasmonic waveguide devices for optical communications.

[1]  K. Novoselov,et al.  Strong plasmonic enhancement of photovoltage in graphene. , 2011, Nature communications.

[2]  D. Koller,et al.  Leakage radiation microscopy of surface plasmon polaritons , 2008, 1002.0725.

[3]  Francesco De Angelis,et al.  Graphene in a photonic metamaterial. , 2010, Optics express.

[4]  Vadim A. Markel LETTER TO THE EDITOR: Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres , 2005 .

[5]  Jonghwan Kim,et al.  Electrical control of optical plasmon resonance with graphene , 2013, CLEO: 2013.

[6]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[7]  S. Bozhevolnyi,et al.  Organic nanofiber-loaded surface plasmon-polariton waveguides. , 2011, Optics express.

[8]  Masanobu Haraguchi,et al.  Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding , 2005 .

[9]  T. Taniguchi,et al.  Photoinduced doping in heterostructures of graphene and boron nitride. , 2014, Nature nanotechnology.

[10]  F. García-Vidal,et al.  Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. , 2008, Physical review letters.

[11]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[12]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[13]  Xiang Zhang,et al.  Double-layer graphene optical modulator. , 2012, Nano letters.

[14]  Yuyan Shao,et al.  Graphene Based Electrochemical Sensors and Biosensors: A Review , 2010 .

[15]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[16]  D. Ansell,et al.  Graphene-protected copper and silver plasmonics , 2014, Scientific Reports.

[17]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[18]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[19]  Nathan Youngblood,et al.  Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. , 2014, Nano letters.

[20]  V. Kravets,et al.  Surface Hydrogenation and Optics of a Graphene Sheet Transferred onto a Plasmonic Nanoarray , 2012 .

[21]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[22]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[23]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[24]  Yihong Wu,et al.  Hysteresis of electronic transport in graphene transistors. , 2010, ACS nano.

[25]  Kinam Kim,et al.  A role for graphene in silicon-based semiconductor devices , 2011, Nature.

[26]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[27]  V. Kravets,et al.  Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. , 2013, Nature materials.

[28]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[29]  Wei Li,et al.  Ultrafast all-optical graphene modulator. , 2014, Nano letters.

[30]  D. Ansell,et al.  Hybrid graphene plasmonic waveguide modulators , 2015, Nature communications.

[31]  Lord Rayleigh,et al.  On the Dynamical Theory of Gratings , 1907 .

[32]  F. García-Vidal,et al.  Efficient unidirectional ridge excitation of surface plasmons. , 2009, Optics express.

[33]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[34]  M. Premaratne,et al.  Graphene metamaterial for optical reflection modulation , 2013 .

[35]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[36]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[37]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[38]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[39]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[40]  V. Kravets,et al.  Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator. , 2015, Nano letters.