Formal Probabilistic Analysis: A Higher-Order Logic Based Approach

Traditionally, simulation is used to perform probabilistic analysis. However, it provides less accurate results and cannot handle large-scale problems due to the enormous CPU time requirements. Recently, a significant amount of formalization has been done in higher-order logic that allows us to conduct precise probabilistic analysis using theorem proving and thus overcome the limitations of the simulation. Some major contributions include the formalization of both discrete and continuous random variables and the verification of some of their corresponding probabilistic and statistical properties. This paper describes the infrastructures behind these capabilities and their utilization to conduct the probabilistic analysis of real-world systems.

[1]  M. Mitzenmacher,et al.  Probability and Computing: Chernoff Bounds , 2005 .

[2]  Aaron Richard Coble,et al.  Anonymity, information, and machine-assisted proof , 2010 .

[3]  Sofiène Tahar,et al.  Formalization of Continuous Probability Distributions , 2007, CADE.

[4]  Marta Z. Kwiatkowska,et al.  Quantitative Analysis With the Probabilistic Model Checker PRISM , 2006, QAPL.

[5]  Jerry den Hartog,et al.  A Probabilistic Hoare-style Logic for Game-Based Cryptographic Proofs , 2006, ICALP.

[6]  Thai Son Hoang,et al.  Qualitative Probabilistic Modelling in Event-B , 2007, IFM.

[7]  Annabelle McIver,et al.  Security, Probability and Nearly Fair Coins in the Cryptographers' Café , 2009, FM.

[8]  Sofiène Tahar,et al.  Using Theorem Proving to Verify Expectation and Variance for Discrete Random Variables , 2008, Journal of Automated Reasoning.

[9]  Zoe Andrews,et al.  Towards a Stochtastic Event-B for Designing Dependable Systems , 2009 .

[10]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[11]  L. M. M.-T. Theory of Probability , 1929, Nature.

[12]  John Harrison Floating Point Verification in HOL Light: The Exponential Function , 1997, AMAST.

[13]  Sofiène Tahar,et al.  Performance Analysis and Functional Verification of the Stop-and-Wait Protocol in HOL , 2008, Journal of Automated Reasoning.

[14]  Christel Baier,et al.  Principles of model checking , 2008 .

[15]  David J. C. Mackay,et al.  Introduction to Monte Carlo Methods , 1998, Learning in Graphical Models.

[16]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[17]  Alberto Leon-Garcia,et al.  Communication Networks , 2000 .

[18]  Alberto Leon-Garcia,et al.  Communication Networks: Fundamental Concepts and Key Architectures , 1999 .

[19]  Christel Baier,et al.  Model-Checking Algorithms for Continuous-Time Markov Chains , 2002, IEEE Trans. Software Eng..

[20]  Rachel Cardell-Oliver The formal verification of hard real-time systems , 1992 .

[21]  Sofiène Tahar,et al.  Formalization of the Standard Uniform random variable , 2007, Theor. Comput. Sci..

[22]  Sofiène Tahar,et al.  Formal verification of tail distribution bounds in the HOL theorem prover , 2009 .

[23]  Alexander Miczo,et al.  Digital logic testing and simulation , 1986 .

[24]  Frank Pfenning,et al.  Automated Deduction - CADE-21, 21st International Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings , 2007, CADE.

[25]  Michael J. C. Gordon,et al.  Mechanizing programming logics in higher order logic , 1989 .

[26]  L. D. Alfaro The Verification of Probabilistic Systems Under Memoryless Partial-Information Policies is Hard , 1999 .

[27]  Sofiène Tahar,et al.  An approach for the formal verification of DSP designs using Theorem proving , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[28]  Christel Baier,et al.  Principles of Model Checking (Representation and Mind Series) , 2008 .

[29]  Ana Cavalcanti,et al.  FM 2009: Formal Methods, Second World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceedings , 2009, FM.

[30]  Holger Hermanns,et al.  A Markov Chain Model Checker , 2000, TACAS.

[31]  David Anthony Parker,et al.  Implementation of symbolic model checking for probabilistic systems , 2003 .

[32]  John Harrison,et al.  Handbook of Practical Logic and Automated Reasoning , 2009 .

[33]  Joe Hurd,et al.  Formal verification of probabilistic algorithms , 2003 .

[34]  B. Widrow Statistical analysis of amplitude-quantized sampled-data systems , 1961, Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry.

[35]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[36]  MA John Harrison PhD Theorem Proving with the Real Numbers , 1998, Distinguished Dissertations.

[37]  Jan J. M. M. Rutten,et al.  Mathematical techniques for analyzing concurrent and probabilistic systems , 2004, CRM monograph series.

[38]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[39]  Sofiène Tahar,et al.  Formal Reliability Analysis Using Theorem Proving , 2010, IEEE Transactions on Computers.

[40]  Sofiène Tahar,et al.  Formal Reasoning about Expectation Properties for Continuous Random Variables , 2009, FM.

[41]  Janos Galambos,et al.  Advanced probability theory , 1988 .

[42]  W. Kent Fuchs,et al.  Probabilistic analysis and algorithms for reconfiguration of memory arrays , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[43]  Mahesh Viswanathan,et al.  VESTA: A statistical model-checker and analyzer for probabilistic systems , 2005, Second International Conference on the Quantitative Evaluation of Systems (QEST'05).

[44]  Graham Birtwistle,et al.  Current Trends in Hardware Verification and Automated Theorem Proving , 1989, Springer New York.