An iterative fast sweeping based eikonal solver for tilted orthorhombic media

SUMMARY Computing first-arrival traveltimes of quasi-P waves in the presence of anisotropy is important for high-end nearsurface modeling, microseismic-source localization, and fractured-reservoir characterization, and requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects of the higher order nonlinear terms. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an algorithm for firstarrival traveltime computations in tilted anisotropic media. We demonstrate our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests demonstrate that the proposed method can match the first arrivals obtained by wavefield extrapolation, even for strong anisotropy and complex structures. Therefore, for the cases where oneor two-point ray tracing fails, our method may be a potential substitute for computing traveltimes. Our approach can be extended to anisotropic media with lower symmetries, such as monoclinic or even triclinic media.

[1]  Hongkai Zhao,et al.  A Fast Sweeping Method for Static Convex Hamilton–Jacobi Equations , 2007, J. Sci. Comput..

[2]  Stanley Osher,et al.  Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[3]  Hervé Delingette,et al.  A Recursive Anisotropic Fast Marching Approach to Reaction Diffusion Equation: Application to Tumor Growth Modeling , 2007, IPMI.

[4]  Tariq Alkhalifah,et al.  An acoustic wave equation for orthorhombic anisotropy , 2003 .

[5]  M. Baan,et al.  Seismic anisotropy in exploration and reservoir characterization: An overview , 2010 .

[6]  Tariq Alkhalifah,et al.  Efficient Traveltime Solutions of the TI Acoustic Eikonal Equation , 2013 .

[7]  V. Červený,et al.  Seismic Ray Theory , 2001, Encyclopedia of Solid Earth Geophysics.

[8]  The First-arrival Tomographic Inversion And Its Application to Identify Thick Near-surface Structures , 2008 .

[9]  J. Sethian,et al.  3-D traveltime computation using the fast marching method , 1999 .

[10]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[11]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[12]  Tariq Alkhalifah,et al.  Scanning anisotropy parameters in complex media , 2011 .

[13]  S. Osher A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations , 1993 .

[14]  William W. Symes,et al.  Upwind finite-difference calculation of traveltimes , 1991 .

[15]  T. Alkhalifah,et al.  q-P Wave Traveltime Computation by an Iterative Approach , 2013 .

[16]  Dimitri Bevc,et al.  Imaging complex structure with semirecursive Kirchhoff migration , 1997 .

[17]  A. Bakulin,et al.  Estimation of fracture parameters from reflection seismic data—Part I: HTI model due to a single fracture set , 2000 .

[18]  A. Al-Shuhail,et al.  Enhancement of Passive Microseismic Events Using Seismic Interferometry , 2013 .

[19]  J. Vidale Finite‐difference calculation of traveltimes in three dimensions , 1990 .

[20]  Henri Calandra,et al.  First-arrival traveltime tomography based on the adjoint-state method , 2009 .

[21]  D. V. Stoep Velocity anisotropy measurements in wells , 1966 .

[22]  W. Symes,et al.  Paraxial eikonal solvers for anisotropic quasi-P travel times , 2001 .

[23]  Emiliano Cristiani A Fast Marching Method for Hamilton-Jacobi Equations Modeling Monotone Front Propagations , 2009, J. Sci. Comput..

[24]  Kendall E. Atkinson An introduction to numerical analysis , 1978 .

[25]  Xiaolei Song,et al.  Modeling of pseudoacoustic P-waves in orthorhombic media with a low-rank approximation , 2013 .

[26]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .