Combining Visual Tracking and Person Detection for Long Term Tracking on a UAV

Visual object tracking performance has improved significantly in recent years. Most trackers are based on either of two paradigms: online learning of an appearance model or the use of a pre-trained ...

[1]  Michael Felsberg,et al.  A Low-Level Active Vision Framework for Collaborative Unmanned Aircraft Systems , 2014, ECCV Workshops.

[2]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[3]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Tahir Nawaz,et al.  Tracking performance evaluation on PETS 2015 Challenge datasets , 2015, 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[6]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[8]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[9]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[10]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, ICCV 2013.

[11]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[12]  Rustam,et al.  The Visual Object Tracking VOT 2013 challenge results , 2018 .

[13]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Cordelia Schmid,et al.  Learning Color Names for Real-World Applications , 2009, IEEE Transactions on Image Processing.

[17]  Tahir Nawaz,et al.  PETS 2014: Dataset and challenge , 2014, 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).