Otoferlin, Defective in a Human Deafness Form, Is Essential for Exocytosis at the Auditory Ribbon Synapse

[1]  N. Ben-Tal,et al.  Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy , 2006, Nature Genetics.

[2]  A. Hudspeth,et al.  Transfer characteristics of the hair cell's afferent synapse. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  T. Südhof,et al.  Different Effects on Fast Exocytosis Induced by Synaptotagmin 1 and 2 Isoforms and Abundance But Not by Phosphorylation , 2006, The Journal of Neuroscience.

[4]  T. Parsons,et al.  Structure and Function of the Hair Cell Ribbon Synapse , 2006, The Journal of Membrane Biology.

[5]  U. Matti,et al.  Identification of the Minimal Protein Domain Required for Priming Activity of Munc13-1 , 2005, Current Biology.

[6]  T. Moser,et al.  Few CaV1.3 Channels Regulate the Exocytosis of a Synaptic Vesicle at the Hair Cell Ribbon Synapse , 2005, The Journal of Neuroscience.

[7]  P. Fuchs Time and intensity coding at the hair cell's ribbon synapse , 2005, The Journal of physiology.

[8]  J. Ashmore,et al.  Fast vesicle replenishment allows indefatigable signalling at the first auditory synapse , 2005, Nature.

[9]  A. Egner,et al.  Hair cell synaptic ribbons are essential for synchronous auditory signalling , 2005, Nature.

[10]  Stuart L. Johnson,et al.  Increase in efficiency and reduction in Ca2+ dependence of exocytosis during development of mouse inner hair cells , 2005, The Journal of physiology.

[11]  W. Almers,et al.  Two ribeye Genes in Teleosts: The Role of Ribeye in Ribbon Formation and Bipolar Cell Development , 2005, The Journal of Neuroscience.

[12]  T. Südhof,et al.  Evolutionarily Conserved Multiple C2 Domain Proteins with Two Transmembrane Regions (MCTPs) and Unusual Ca2+ Binding Properties* , 2005, Journal of Biological Chemistry.

[13]  K. Beisel,et al.  Partial behavioral compensation is revealed in balance tasked mutant mice lacking otoconia , 2004, Brain Research Bulletin.

[14]  F. Moreno,et al.  Auditory neuropathy in patients carrying mutations in the otoferlin gene (OTOF) , 2003, Human mutation.

[15]  J. Striessnig,et al.  CaV1.3 Channels Are Essential for Development and Presynaptic Activity of Cochlear Inner Hair Cells , 2003, The Journal of Neuroscience.

[16]  Richard A. Flavell,et al.  Impaired membrane resealing and autoimmune myositis in synaptotagmin VII–deficient mice , 2003, The Journal of cell biology.

[17]  E. McNally,et al.  Repairing the tears: dysferlin in muscle membrane repair. , 2003, Trends in molecular medicine.

[18]  B. Giros,et al.  Lysosomal amino acid transporter LYAAT‐1 in the rat central nervous system: An in situ hybridization and immunohistochemical study , 2003, The Journal of comparative neurology.

[19]  Chien-Chang Chen,et al.  Defective membrane repair in dysferlin-deficient muscular dystrophy , 2003, Nature.

[20]  R. Jahn,et al.  The Habc domain and the SNARE core complex are connected by a highly flexible linker. , 2003, Biochemistry.

[21]  Josef Ammermüller,et al.  The Presynaptic Active Zone Protein Bassoon Is Essential for Photoreceptor Ribbon Synapse Formation in the Retina , 2003, Neuron.

[22]  S. Leal,et al.  Non-syndromic recessive auditory neuropathy is the result of mutations in the otoferlin (OTOF) gene , 2003, Journal of medical genetics.

[23]  Edwin R. Chapman,et al.  Synaptotagmin: A Ca2+ sensor that triggers exocytosis? , 2002, Nature Reviews Molecular Cell Biology.

[24]  R. Petralia,et al.  Ocsyn, a Novel Syntaxin-Interacting Protein Enriched in the Subapical Region of Inner Hair Cells , 2002, Molecular and Cellular Neuroscience.

[25]  Xiaodong Zhang,et al.  Ca2+-Dependent Synaptotagmin Binding to SNAP-25 Is Essential for Ca2+-Triggered Exocytosis , 2002, Neuron.

[26]  S. Safieddine,et al.  Cysteine‐string protein in inner hair cells of the organ of Corti: synaptic expression and upregulation at the onset of hearing , 2002, The European journal of neuroscience.

[27]  Paul A. Fuchs,et al.  Transmitter release at the hair cell ribbon synapse , 2002, Nature Neuroscience.

[28]  Ping Wang,et al.  C2A activates a cryptic Ca2+-triggered membrane penetration activity within the C2B domain of synaptotagmin I , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  T. Südhof,et al.  SNARE Function Analyzed in Synaptobrevin/VAMP Knockout Mice , 2001, Science.

[30]  T. Südhof,et al.  Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. von Gersdorff,et al.  Structure suggests function: the case for synaptic ribbons as exocytotic nanomachines , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[32]  E. Caler,et al.  Plasma Membrane Repair Is Mediated by Ca2+-Regulated Exocytosis of Lysosomes , 2001, Cell.

[33]  T. Südhof,et al.  The C2B domain of synaptotagmin I is a Ca2+-binding module. , 2001, Biochemistry.

[34]  Thomas Voets,et al.  Calcium Dependence of Exocytosis and Endocytosis at the Cochlear Inner Hair Cell Afferent Synapse , 2001, Neuron.

[35]  T. Südhof,et al.  RIBEYE, a Component of Synaptic Ribbons A Protein's Journey through Evolution Provides Insight into Synaptic Ribbon Function , 2000, Neuron.

[36]  C. Petit,et al.  OTOF encodes multiple long and short isoforms: genetic evidence that the long ones underlie recessive deafness DFNB9. , 2000, American journal of human genetics.

[37]  J. Engel,et al.  Congenital Deafness and Sinoatrial Node Dysfunction in Mice Lacking Class D L-Type Ca2+ Channels , 2000, Cell.

[38]  V. A. Klenchin,et al.  Priming in exocytosis: attaining fusion-competence after vesicle docking. , 2000, Biochimie.

[39]  T. Martin,et al.  The C Terminus of SNAP25 Is Essential for Ca2+-dependent Binding of Synaptotagmin to SNARE Complexes* , 2000, The Journal of Biological Chemistry.

[40]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[41]  D. Davis,et al.  Myoferlin, a candidate gene and potential modifier of muscular dystrophy. , 2000, Human molecular genetics.

[42]  T. Moser,et al.  Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Thomas C. Südhof,et al.  Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles , 1999, Nature.

[44]  M. Cohen-Salmon,et al.  A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness , 1999, Nature Genetics.

[45]  R. Wenthold,et al.  SNARE complex at the ribbon synapses of cochlear hair cells: analysis of synaptic vesicle‐ and synaptic membrane‐associated proteins , 1999, The European journal of neuroscience.

[46]  A. Brunger,et al.  Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  T. Martin,et al.  Docking and fusion in neurosecretion. , 1998, Current opinion in cell biology.

[48]  T. Südhof,et al.  C2-domains, Structure and Function of a Universal Ca2+-binding Domain* , 1998, The Journal of Biological Chemistry.

[49]  J. Aran,et al.  CD1 hearing-impaired mice. II: Group latencies and optimal f2/f1 ratios of distortion product otoacoustic emissions, and scanning electron microscopy , 1998, Hearing Research.

[50]  R. Wenthold,et al.  The Glutamate Receptor Subunit δ1 Is Highly Expressed in Hair Cells of the Auditory and Vestibular Systems , 1997, The Journal of Neuroscience.

[51]  S. Ward,et al.  A nematode gene required for sperm vesicle fusion. , 1997, Journal of cell science.

[52]  J. Rothman,et al.  Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[53]  T. Südhof,et al.  Synaptotagmin–Syntaxin Interaction: The C2 Domain as a Ca2+-Dependent Electrostatic Switch , 1997, Neuron.

[54]  J. Falke,et al.  The C2 domain calcium‐binding motif: Structural and functional diversity , 1996, Protein science : a publication of the Protein Society.

[55]  M. Liberman,et al.  Ultrastructural differences among afferent synapses on cochlear hair cells: Correlations with spontaneous discharge rate , 1996, The Journal of comparative neurology.

[56]  O. Ottersen,et al.  Organization of AMPA Receptor Subunits at a Glutamate Synapse: A Quantitative Immunogold Analysis of Hair Cell Synapses in the Rat Organ of Corti , 1996, The Journal of Neuroscience.

[57]  A. S. French,et al.  Information processing by graded-potential transmission through tonically active synapses , 1996, Trends in Neurosciences.

[58]  R. Scheller,et al.  Localization of synaptotagmin-binding domains on syntaxin , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  P. Hanson,et al.  Ca2+ Regulates the Interaction between Synaptotagmin and Syntaxin 1 (*) , 1995, The Journal of Biological Chemistry.

[60]  Thomas C. Südhof,et al.  Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins , 1995, Nature.

[61]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[62]  P. Monaghan,et al.  An appraisal of low‐temperature embedding by progressive lowering of temperature into Lowicryl HM20 for immunocytochemical studies , 1992, Journal of microscopy.

[63]  Peter Dallos,et al.  The role of outer hair cell motility in cochlear tuning , 1991, Current Opinion in Neurobiology.

[64]  P. Greengard,et al.  Synapsins in the vertebrate retina: Absence from ribbon synapses and heterogeneous distribution among conventional synapses , 1990, Neuron.

[65]  D. O. Kim Active and nonlinear cochlear biomechanics and the role of outer-hair-cell subsystem in the mammalian auditory system , 1986, Hearing Research.

[66]  J. E. Rose,et al.  Distribution of synaptic ribbons in the developing organ of Corti , 1986, Journal of neurocytology.

[67]  Craig C. Bader,et al.  Evoked mechanical responses of isolated cochlear outer hair cells. , 1985, Science.

[68]  E Neher,et al.  Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[69]  M. Liberman Morphological differences among radial afferent fibers in the cat cochlea: An electron-microscopic study of serial sections , 1980, Hearing Research.

[70]  J. E. Rose,et al.  Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. , 1967, Journal of neurophysiology.

[71]  T. Sudhof,et al.  The synaptic vesicle cycle. , 2004, Annual review of neuroscience.

[72]  L. Donald Partridge,et al.  Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis , 2002, Nature Neuroscience.

[73]  Thorsten Lang,et al.  Membrane fusion. , 2002, Current opinion in cell biology.

[74]  R. Pujol,et al.  Development of Sensory and Neural Structures in the Mammalian Cochlea , 1998 .

[75]  Malou M-Louise Haine,et al.  Van Laer N. , 1986 .

[76]  I. Varela-Nieto,et al.  Development of auditory and vestibular systems , 1983 .

[77]  J. Rizo,et al.  Accelerated Publications The C 2 B Domain of Synaptotagmin I Is a Ca 2 +-Binding Module † , 2022 .