Photovoltaics from soluble small molecules

Solution-processable small molecules have attractive features for application in photovoltaic cells. They offer the facile processing associated with polymers, yet are easier to synthesize and purify, are monodisperse, and typically show higher charge carrier mobilities. Recent progress in solution-processable small molecule blends has yielded photovoltaic cells with efficiencies exceeding 1%. This article reviews progress in this nascent field and discusses the requirements imposed by the need for charge separation within an interpenetrating network, energy level tuning for light absorption and voltage output, and processing techniques to achieve phase separation on excitonic length scales. Design criteria for next-generation materials are provided.

[1]  J. Rogers,et al.  Organic light-emitting devices with laminated top contacts , 2004 .

[2]  J. Grenzer,et al.  Solution Processable Organic Field-Effect Transistors Utilizing an α,α‘-Dihexylpentathiophene-Based Swivel Cruciform , 2006 .

[3]  C. Winder,et al.  Photophysics and photovoltaic device properties of phthalocyanine–fullerene dyad:conjugated polymer mixtures , 2004 .

[4]  G. Hadziioannou,et al.  Organic co-evaporated films of a PPV-pentamer and C60: model systems for donor/acceptor polymer blends , 2002 .

[5]  Bernard Kippelen,et al.  Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions , 2004 .

[6]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[7]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[8]  Raj René Janssen,et al.  Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells , 2001 .

[9]  John E. Anthony,et al.  Bandlike transport in pentacene and functionalized pentacene thin films revealed by subpicosecond transient photoconductivity measurements , 2005 .

[10]  D. Law,et al.  40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells , 2007 .

[11]  Xiaoniu Yang,et al.  Relating the Morphology of Poly(p‐phenylene vinylene)/Methanofullerene Blends to Solar‐Cell Performance , 2004 .

[12]  R. Friend,et al.  Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. , 2001, Science.

[13]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[14]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[15]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[16]  Jurjen Wildeman,et al.  Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylene vinylene) derivatives , 2005 .

[17]  Giuseppe Grosso,et al.  Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solids , 2001 .

[18]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[19]  Rémi de Bettignies,et al.  Three-dimensional tetra(oligothienyl)silanes as donor material for organic solar cells , 2006 .

[20]  Antoine Kahn,et al.  Charge-separation energy in films of π-conjugated organic molecules , 2000 .

[21]  Stephen R. Forrest,et al.  A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic Cell , 2005 .

[22]  J. Roncali Synthetic Principles for Bandgap Control in Linear pi-Conjugated Systems. , 1997, Chemical reviews.

[23]  P. Frère,et al.  3D π‐Conjugated Oligothiophenes Based on Sterically Twisted Bithiophene Nodes , 2007 .

[24]  David L Eaton,et al.  A road map to stable, soluble, easily crystallized pentacene derivatives. , 2002, Organic letters.

[25]  J. Rogers,et al.  Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals , 2004, Science.

[26]  Antonio Facchetti,et al.  Semiconductors for organic transistors , 2007 .

[27]  Stephen R. Forrest,et al.  Separation of geminate charge-pairs at donor–acceptor interfaces in disordered solids , 2004 .

[28]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[29]  Daoben Zhu,et al.  X-shaped oligothiophenes as a new class of electron donors for bulk-heterojunction solar cells. , 2006, The journal of physical chemistry. B.

[30]  A. Balch,et al.  Fullerene-acene chemistry: single-crystal X-ray structures for a [60]fullerene-pentacene monoadduct and a cis-bis[60]fullerene adduct of 6,13-diphenylpentacene. , 2003, Organic letters.

[31]  Valentin D. Mihailetchi,et al.  Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells , 2006 .

[32]  C. McNeill,et al.  X-ray spectromicroscopy of polymer/fullerene composites: quantitative chemical mapping. , 2006, Small.

[33]  Michael D. McGehee,et al.  Resonance energy transfer from organic chromophores to fullerene molecules , 2006 .

[34]  Barry P Rand,et al.  The effects of copper phthalocyanine purity on organic solar cell performance , 2005 .

[35]  Donghang Yan,et al.  An investigation on air stability of copper phthalocyanine-based organic thin-film transistors and device encapsulation , 2006 .

[36]  Stephen R. Forrest,et al.  Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells , 2007 .

[37]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[38]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[39]  Stephen R. Forrest,et al.  The Limits to Organic Photovoltaic Cell Efficiency , 2005 .

[40]  G. Hadziioannou Semiconducting Block Copolymers for Self-Assembled Photovoltaic Devices , 2002 .

[41]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .

[42]  Chun-Sing Lee,et al.  Doping-induced efficiency enhancement in organic photovoltaic devices , 2007 .

[43]  A. Bard,et al.  In-Situ Regrowth and Purification by Zone Melting of Organic Single-Crystal Thin Films Yielding Significantly Enhanced Optoelectronic Properties , 2000 .

[44]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[45]  Jean Roncali,et al.  Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. , 2006, Journal of the American Chemical Society.

[46]  Paul A. van Hal,et al.  Synthesis, photophysical properties, and photovoltaic devices of oligo(p-phenylene vinylene)-fullerene dyads , 2000 .

[47]  J S Brooks,et al.  Functionalized pentacene: improved electronic properties from control of solid-state order. , 2001, Journal of the American Chemical Society.

[48]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[49]  M. Münch,et al.  Fast electronic transport in organic molecular solids , 1999 .

[50]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[51]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[52]  Brian A. Gregg,et al.  The Photoconversion Mechanism of Excitonic Solar Cells , 2005 .

[53]  P. Frère,et al.  Molecular and supramolecular engineering of π-conjugated systems for photovoltaic conversion , 2006 .

[54]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[55]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[56]  Brian A. Gregg,et al.  Evolution of Photophysical and Photovoltaic Properties of Perylene Bis(phenethylimide) Films upon Solvent Vapor Annealing , 1996 .

[57]  Paul A. van Hal,et al.  Photoinduced Energy And Electron Transfer In Fullerene-oligothiophene-fullerene Triads , 2000 .

[58]  Paul W. M. Blom,et al.  Optimum charge carrier mobility in organic solar cells , 2007 .

[59]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[60]  Christoph J. Brabec,et al.  Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time , 2001 .

[61]  G. Hadziioannou,et al.  Synthesis of a C60-oligophenylenevinylene hybrid and its incorporation in a photovoltaic device , 1999 .

[62]  Mm Martijn Wienk,et al.  Solution‐Processed Organic Tandem Solar Cells , 2006 .

[63]  Stephen R. Forrest,et al.  Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions , 2004 .

[64]  O. Inganäs,et al.  Enhanced Photocurrent Spectral Response in Low‐Bandgap Polyfluorene and C70‐Derivative‐Based Solar Cells , 2005 .

[65]  Valentin D. Mihailetchi,et al.  Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells , 2006 .

[66]  N. S. Sariciftci,et al.  Photoinduced charge and energy transfer involving fullerene derivatives , 2006, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[67]  Chihaya Adachi,et al.  Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells , 2007 .

[68]  Paul F. Barbara,et al.  Impact of Solvent Vapor Annealing on the Morphology and Photophysics of Molecular Semiconductor Thin Films , 1998 .

[69]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[70]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[71]  John E. Anthony,et al.  High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors , 2007 .

[72]  S. Shaheen,et al.  Bulk heterojunction organic photovoltaic devices based on phenyl-cored thiophene dendrimers , 2006 .

[73]  M. Thelakkat,et al.  Microphase‐Separated Donor–Acceptor Diblock Copolymers: Influence of HOMO Energy Levels and Morphology on Polymer Solar Cells , 2007 .

[74]  Barry P Rand,et al.  4.2% efficient organic photovoltaic cells with low series resistances , 2004 .

[75]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[76]  Martin Pfeiffer,et al.  Bulk-heterojunction photovoltaic devices based on donor-acceptor organic small molecule blends , 2003 .

[77]  Xiaoniu Yang,et al.  Toward High-Performance Polymer Solar Cells: The Importance of Morphology Control , 2007 .

[78]  Stephen C. Moratti,et al.  EXCITON DIFFUSION AND DISSOCIATION IN A POLY(P-PHENYLENEVINYLENE)/C60 HETEROJUNCTION PHOTOVOLTAIC CELL , 1996 .

[79]  P. Blom,et al.  Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics , 2005, Nature materials.

[80]  J. Brédas,et al.  Pathways for Resonant Energy Transfer in Oligo(phenylenevinylene)–Fullerene Dyads: An Atomistic Model , 2006 .

[81]  Norbert Koch,et al.  Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films , 2003 .

[82]  Audrey M. Bowen,et al.  Photovoltaic cells from a soluble pentacene derivative , 2006 .

[83]  Moses,et al.  Sensitization of the photoconductivity of conducting polymers by C60: Photoinduced electron transfer. , 1993, Physical review. B, Condensed matter.

[84]  Jenny Nelson,et al.  Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. , 2006, The journal of physical chemistry. B.

[85]  John E. Anthony,et al.  Improving Organic Thin‐Film Transistor Performance through Solvent‐Vapor Annealing of Solution‐Processable Triethylsilylethynyl Anthradithiophene , 2006 .

[86]  Reuben T. Collins,et al.  Hybrid photovoltaic devices of polymer and ZnO nanofiber composites , 2006 .

[87]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[88]  E. Sudhölter,et al.  Liquid Crystalline Perylene diimides : Architecture and Charge Carrier Mobilities , 2000 .