On the geometric–arithmetic index by decompositions-CMMSE

The concept of geometric–arithmetic index was introduced in the chemical graph theory recently, but it has shown to be useful. There are many papers studying different kinds of indices (as Wiener, hyper–Wiener, detour, hyper–detour, Szeged, edge–Szeged, PI, vertex–PI and eccentric connectivity indices) under particular cases of decompositions. The main aim of this paper is to show that the computation of the geometric-arithmetic index of a graph G is essentially reduced to the computation of the geometric-arithmetic indices of the so-called primary subgraphs obtained by a general decomposition of G. Furthermore, using these results, we obtain formulas for the geometric-arithmetic indices of bridge graphs and other classes of graphs, like bouquet of graphs and circle graphs. These results are applied to the computation of the geometric-arithmetic index of Spiro chain of hexagons, polyphenylenes and polyethene.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[3]  O. Ore Diameters in graphs , 1968 .

[4]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[5]  M. Randic Characterization of molecular branching , 1975 .

[6]  J. Koolen,et al.  On the Hyperbolicity of Chordal Graphs , 2001 .

[7]  Anthony J. Guttmann,et al.  On the Number of Benzenoid Hydrocarbons , 2002, J. Chem. Inf. Comput. Sci..

[8]  N. Trinajstic Xueliang Li, Ivan Gutman: Mathematical Aspects of Randić-type Molecular Structure Descriptors , 2006 .

[9]  N. Sridharan,et al.  Wiener index of graphs with more than one cut-vertex , 2008, Appl. Math. Lett..

[10]  T. Mansour,et al.  The PI index of bridge and chain graphs , 2009 .

[11]  Toufik Mansour,et al.  The vertex PI index and Szeged index of bridge graphs , 2009, Discret. Appl. Math..

[12]  D. Vukicevic,et al.  Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges , 2009 .

[13]  T. Mansour,et al.  Wiener, hyper-Wiener, detour and hyper-detour indices of bridge and chain graphs , 2009 .

[14]  Bo Zhou,et al.  On geometric-arithmetic index , 2010 .

[15]  Kinkar Chandra Das,et al.  On the first geometric-arithmetic index of graphs , 2011, Discret. Appl. Math..

[16]  G. Fath-Tabar,et al.  Some Bounds on GA1 Index of Graphs , 2011 .

[17]  I. Gutman,et al.  Survey on Geometric-Arithmetic Indices of Graphs , 2011 .

[18]  Jose Maria Sigarreta,et al.  Hyperbolicity and parameters of graphs , 2011, Ars Comb..

[19]  Computing Hosoya polynomials of graphs from primary subgraphs , 2012, 1212.3179.

[20]  S. Klavžar,et al.  Computing the Hosoya Polynomial of Graphs from Primary Subgraphs , 2013 .

[21]  Jose Maria Sigarreta,et al.  Gromov hyperbolic graphs , 2013, Discret. Math..

[22]  J. M. Sigarreta,et al.  On the Randić index and conditional parameters of a graph , 2013, 1311.7316.

[23]  J. M. Sigarreta Bounds for The Geometric-Arithmetic Index of a Graph , 2015 .

[24]  Juan A. Rodríguez-Velázquez,et al.  Computing the local metric dimension of a graph from the local metric dimension of primary subgraphs , 2015, Int. J. Comput. Math..

[25]  M. Rodr,et al.  On the Geometric{Arithmetic Index , 2015 .

[26]  Jose Maria Sigarreta,et al.  Spectral properties of geometric-arithmetic index , 2016, Appl. Math. Comput..

[27]  I. Gutman,et al.  Splice Graphs and Their Topological Indices , 2016, 1611.02819.