Single peak solitary wave solutions for the generalized KP-MEW (2, 2) equation under boundary condition

The qualitative theory of differential equations is applied to the KP-MEW (2,2) equation (q"t+(q^2)"x+(q^2)"x"x"t)"x+q"y"y=0. Our procedure shows that the KP-MEW (2,2) equation either has the regular peakon soliton, cuspon soliton and smooth soliton solutions when sitting on the non-zero constant pedestal lim"@x"->"+/-"~q(@x)=A 0, or possesses compacton solutions only when lim"@x"->"+/-"~q(@x)=A=0. In particular, we present mathematical analysis and numerical simulations are provided for those peakon, cuspon, compacton, loop soliton and smooth soliton solutions.

[1]  Abdul-Majid Wazwaz,et al.  Solutions of compact and noncompact structures for nonlinear Klein-Gordon-type equation , 2003, Appl. Math. Comput..

[2]  J. Lenells Traveling wave solutions of the Camassa-Holm equation , 2005 .

[3]  E. Fan,et al.  Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics , 2003 .

[4]  Abdul-Majid Wazwaz,et al.  A reliable treatment of the physical structure for the nonlinear equation K(m, n) , 2005, Appl. Math. Comput..

[5]  Wentao Huang,et al.  Bifurcations of travelling wave solutions for the K(n, -n, 2n) equations , 2008, Appl. Math. Comput..

[6]  Abdul-Majid Wazwaz,et al.  A class of nonlinear fourth order variant of a generalized Camassa-Holm equation with compact and noncompact solutions , 2005, Appl. Math. Comput..

[7]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[8]  Zhaojuan Wang,et al.  Travelling wave solutions for a class of nonlinear fourth order variant of a generalized Camassa-Holm equation , 2009, Appl. Math. Comput..

[9]  Jibin Li,et al.  Smooth and non-smooth traveling waves in a nonlinearly dispersive equation , 2000 .

[10]  Zhenya Yan New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations , 2001 .

[11]  Guoping Zhang,et al.  Cuspons and Smooth Solitons of the Degasperis–Procesi Equation Under Inhomogeneous Boundary Condition , 2007 .

[12]  Aiyong Chen,et al.  Single peak solitary wave solutions for the osmosis K(2,2) equation under inhomogeneous boundary condition , 2010 .

[13]  Dahe Feng,et al.  The improved Fan sub-equation method and its application to the SK equation , 2009, Appl. Math. Comput..

[14]  Lina Zhang,et al.  Special exact soliton solutions for the K(2, 2) equation with non-zero constant pedestal , 2011, Appl. Math. Comput..

[15]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[16]  Jibin Li,et al.  On the study of singular nonlinear traveling wave equations : dynamical system approach = 奇非线性行波方程研究的动力系统方法 , 2007 .

[17]  Z. Qiao,et al.  On peaked and smooth solitons for the Camassa-Holm equation , 2006 .

[18]  Jibin Li,et al.  TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS , 2002 .

[19]  Wentao Huang,et al.  Bifurcations of travelling wave solutions for the generalized KP-BBM equation , 2010, Appl. Math. Comput..

[20]  Asit Saha,et al.  Bifurcation of travelling wave solutions for the generalized KP-MEW equations , 2012 .

[21]  Wentao Huang,et al.  Travelling wave solutions of the Fornberg-Whitham equation , 2009, Appl. Math. Comput..