FBXO32 links ubiquitination to epigenetic reprograming of melanoma cells

[1]  Jianing Wei,et al.  MicroRNA-504 functions as a tumor suppressor in oral squamous cell carcinoma through inhibiting cell proliferation, migration and invasion by targeting CDK6. , 2019, The international journal of biochemistry & cell biology.

[2]  J. Marine,et al.  Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities , 2019, Genes & development.

[3]  C. Goding,et al.  MITF—the first 25 years , 2019, Genes & development.

[4]  R. Weinberg,et al.  EMT and Cancer: More Than Meets the Eye. , 2019, Developmental cell.

[5]  Michael B. Stadler,et al.  Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors , 2019, Nature.

[6]  M. Dogrusöz,et al.  Genetic prognostication in uveal melanoma , 2018, Acta ophthalmologica.

[7]  C. Bertolotto,et al.  Uncovering and deciphering the pro-invasive role of HACE1 in melanoma cells , 2018, Cell Death & Differentiation.

[8]  K. Bille,et al.  Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype , 2018, Genes & development.

[9]  Jianfei Qi,et al.  Ubiquitin ligases in oncogenic transformation and cancer therapy , 2017, Nature Reviews Cancer.

[10]  S. Strand,et al.  FBXO32 promotes microenvironment underlying epithelial-mesenchymal transition via CtBP1 during tumour metastasis and brain development , 2017, Nature Communications.

[11]  Z. Liu,et al.  FBXO32 suppresses breast cancer tumorigenesis through targeting KLF4 to proteasomal degradation , 2017, Oncogene.

[12]  Chunying Li,et al.  Ubiquitination in melanoma pathogenesis and treatment , 2017, Cancer medicine.

[13]  D. Schadendorf,et al.  SF3B1 and BAP1 mutations in blue nevus-like melanoma , 2017, Modern Pathology.

[14]  K. Flaherty,et al.  Targeted agents and immunotherapies: optimizing outcomes in melanoma , 2017, Nature Reviews Clinical Oncology.

[15]  J. Sosman,et al.  Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma , 2017, Cell.

[16]  Eiji Kikuchi,et al.  Acquired platinum resistance involves epithelial to mesenchymal transition through ubiquitin ligase FBXO32 dysregulation. , 2016, JCI insight.

[17]  Marie Perier-Muzet,et al.  ZEB1‐mediated melanoma cell plasticity enhances resistance to MAPK inhibitors , 2016, EMBO molecular medicine.

[18]  L. Thomas,et al.  PARKIN Inactivation Links Parkinson's Disease to Melanoma. , 2016, Journal of the National Cancer Institute.

[19]  A. Azmi,et al.  F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities. , 2016, Seminars in cancer biology.

[20]  M. Cubillos-Rojas,et al.  Functional and pathological relevance of HERC family proteins: a decade later , 2016, Cellular and Molecular Life Sciences.

[21]  D. Gautheret,et al.  New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis , 2015, Cell reports.

[22]  S. Aerts,et al.  Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells , 2015, eLife.

[23]  T. Graeber,et al.  Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma , 2014, Nature Communications.

[24]  S. Bodine,et al.  Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. , 2014, American journal of physiology. Endocrinology and metabolism.

[25]  R. Melamed,et al.  FBXW7 mutations in melanoma and a new therapeutic paradigm. , 2014, Journal of the National Cancer Institute.

[26]  J. Mesirov,et al.  A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. , 2014, Cancer discovery.

[27]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[28]  P. Bahadoran,et al.  Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny , 2011, Oncogene.

[29]  R. Dummer,et al.  In vivo switching of human melanoma cells between proliferative and invasive states. , 2008, Cancer research.

[30]  T. Archer,et al.  Review Nuclear Receptor Signaling | The Open Access Journal of the Nuclear Receptor Signaling Atlas The BRG1 transcriptional coregulator , 2022 .

[31]  Jane Goodall,et al.  Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. , 2006, Genes & development.

[32]  K. Struhl,et al.  Chromatin Immunoprecipitation for Determining the Association of Proteins with Specific Genomic Sequences In Vivo , 2004, Current protocols in molecular biology.

[33]  D. Fisher,et al.  Microphthalmia Gene Product as a Signal Transducer in cAMP-Induced Differentiation of Melanocytes , 1998, The Journal of cell biology.

[34]  S. Waxman,et al.  Emerging Roles of Epigenetic Regulator Sin3 in Cancer. , 2016, Advances in cancer research.