A modified damped Newton method for linear complementarity problems

We present a modified damped Newton method for solving large sparse linear complementarity problems, which adopts a new strategy for determining the stepsize at each Newton iteration. The global convergence of the new method is proved when the system matrix is a nondegenerate matrix. We then apply the matrix splitting technique to this new method, deriving an inexact splitting method for the linear complementarity problems. The global convergence of the resulting inexact splitting method is proved, too. Numerical results show that the new methods are feasible and effective for solving the large sparse linear complementarity problems.

[1]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[2]  David J. Evans,et al.  Matrix multisplitting relaxation methods for linear complementarity problems , 1997, Int. J. Comput. Math..

[3]  H. Bavinck,et al.  Differential and difference operators having orthogonal polynomials with two linear perturbations as eigenfunctions , 1998 .

[4]  Zhong-Zhi Bai Asynchronous parallel nonlinear multisplitting relaxation methods for large sparse nonlinear complementarity problems , 1998, Appl. Math. Comput..

[5]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[6]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[7]  Jong-Shi Pang,et al.  Inexact Newton methods for the nonlinear complementarity problem , 1986, Math. Program..

[8]  Z. Bai A class of asynchronous parallel nonlinear accelerated overrelaxation methods for the nonlinear complementarity problems , 1998 .

[9]  A. Fischer A Newton-type method for positive-semidefinite linear complementarity problems , 1995 .

[10]  D. Szyld,et al.  H-Splittings and two-stage iterative methods , 1992 .

[11]  Masao Fukushima,et al.  A multisplitting method for symmetric linear complementarity problems , 1995 .

[12]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[13]  K. G. Murty,et al.  Complementarity problems , 2000 .

[14]  Charles R. Johnson Review: Abraham Berman and Robert J. Plemmons,Nonnegative matrices in the mathematical sciences , 1982 .

[15]  O. Mangasarian Solution of symmetric linear complementarity problems by iterative methods , 1977 .

[16]  Zhong-Zhi Bai,et al.  On the Convergence of the Multisplitting Methods for the Linear Complementarity Problem , 1999, SIAM J. Matrix Anal. Appl..

[17]  Zhong-zhi,et al.  RELAXED ASYNCHRONOUS ITERATIONS FOR THE LINEAR COMPLEMENTARITY PROBLEM , 2002 .

[18]  Zhong-Zhi Bai,et al.  The convergence of parallel iteration algorithms for linear complementarity problems , 1996 .

[19]  Xiaojun Chen SMOOTHING METHODS FOR COMPLEMENTARITY PROBLEMS AND THEIR APPLICATIONS : A SURVEY , 2000 .

[20]  Mei-Qun Jiang,et al.  On convergence of two-stage splitting methods for linear complementarity problems , 2005 .

[21]  Jong-Shi Pang,et al.  Newton's Method for B-Differentiable Equations , 1990, Math. Oper. Res..

[22]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[23]  G. Isac Complementarity Problems , 1992 .

[24]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[25]  Zhong-zhiBai,et al.  A CLASS OF ASYNCHRONOUS PARALLEL MULTISPLITTING RELAXATION METHODS FOR LARGE SPARSE LINEAR COMPLEMENTARITY PROBLEMS , 2003 .

[26]  Zhong-Zhi Bai,et al.  Chaotic iterative methods for the linear complementarity problems , 1998 .

[27]  Olvi L. Mangasarian Convergence of Iterates of an Inexact Matrix Splitting Algorithm for the Symmetric Monotone Linear Complementarity Problem , 1991, SIAM J. Optim..

[28]  David J. Evans,et al.  Matrix Multisplitting Methods with Applications to Linear Complementarity Problems∶ Parallel Asynchronous Methods , 2002, Int. J. Comput. Math..

[29]  J. Pang On the convergence of a basic iterative method for the implicit complementarity problem , 1982 .

[30]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[31]  C. Cryer The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .

[32]  Zhong-Zhi Bai,et al.  On the monotone convergence of matrix multisplitting relaxation methods for the linear complementarity problem , 1998 .

[33]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .