Binary Alkali-Metal Silicon Clathrates by Spark Plasma Sintering: Preparation and Characterization

The binary intermetallic clathrates K8-xSi46 (x = 0.4; 1.2), Rb6.2Si46, Rb11.5Si136 and Cs7.8Si136 were prepared from M4Si4 (M = K, Rb, Cs) precursors by spark-plasma route (SPS) and structurally characterized by Rietveld refinement of PXRD data. The clathrate-II phase Rb11.5Si136 was synthesized for the first time. Partial crystallographic site occupancy of the alkali metals, particularly for the smaller Si20 dodecahedra, was found in all compounds. SPS preparation of Na24Si136 with different SPS current polarities and tooling were performed in order to investigate the role of the electric field on clathrate formation. The electrical and thermal transport properties of K7.6Si46 and K6.8Si46 in the temperature range 4–700 K were investigated. Our findings demonstrate that SPS is a novel tool for the synthesis of intermetallic clathrate phases that are not easily accessible by conventional synthesis techniques.

[1]  S. Bobev,et al.  Clathrates of Group 14 with Alkali Metals: An Exploration , 2000 .

[2]  C. Cros,et al.  Sur une nouvelle famille de clathrates minéraux isotypes des hydrates de gaz et de liquides. Interprétation des résultats obtenus , 1970 .

[3]  G. Nolas,et al.  Synthesis of Na8Si46 and Na24Si136 by oxidation of Na4Si4 from ionic liquid decomposition , 2013 .

[4]  P. Zavalij,et al.  Simple Approach for Selective Crystal Growth of Intermetallic Clathrates , 2011 .

[5]  Y. Grin,et al.  Application of n-Dodecyltrimethylammonium Chloride for the Oxidation of Intermetallic Phases , 2011 .

[6]  Yuri Grin,et al.  WinCSD: software package for crystallographic calculations (Version 4) , 2014 .

[7]  G. Nolas,et al.  Transport Properties of the Binary Type I Clathrate K8Ge44□2 , 2007 .

[8]  G. Nolas,et al.  Synthesis and Structural Characterization of Single-Crystal K7.5Si46 and K17.8Si136 Clathrates , 2011 .

[9]  C. Koh,et al.  Synthesis and structural properties of type I potassium SiGe alloy clathrates , 2015 .

[10]  M. Pouchard,et al.  Structural characterisations of the NaxSi136 and Na8Si46 silicon clathrates using the Rietveld method , 1998 .

[11]  M. Pouchard,et al.  On the clathrate form of elemental silicon, Si136: preparation and characterisation of NaxSi136 (x→0) , 2004 .

[12]  P. McMillan,et al.  Time-Resolved in Situ Synchrotron X-ray Diffraction Studies of Type 1 Silicon Clathrate Formation , 2011 .

[13]  H. Borrmann,et al.  Preparation and crystal growth of Na24Si136. , 2009, Journal of the American Chemical Society.

[14]  G. Nolas,et al.  Rapid crystal growth of type-II clathrates A8Na16Si136 (A = K, Rb, Cs) by spark plasma sintering , 2015 .

[15]  C. Cros,et al.  Sur les phases de type clathrate du silicium et des éléments apparentés (C, Ge, Sn) : Une approche historique , 2009 .

[16]  Yuri Grin,et al.  A guest-free germanium clathrate , 2006, Nature.

[17]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[18]  G. Nolas The Physics and Chemistry of Inorganic Clathrates , 2014 .

[19]  H. Borrmann,et al.  Intrinsic electrical and thermal properties from single crystals of Na24Si136. , 2010, Physical review letters.

[20]  H. Lichte,et al.  Synthesis of the clathrate-I phase Ba(8-x)Si46 via redox reactions. , 2011, Inorganic chemistry.

[21]  J. Kasper,et al.  Clathrate Structure of Silicon Na8Si46 and NaxSi136 (x < 11) , 1965, Science.

[22]  G. Nolas,et al.  Precursor Routes to Quaternary Intermetallics: Synthesis, Crystal Structure, and Physical Properties of Clathrate-II Cs8Na16Al24Si112. , 2016 .

[23]  E. Hohmann Silicide und Germanide der Alkalimetalle , 1948 .

[24]  G. Nolas,et al.  Precursor Routes to Complex Ternary Intermetallics: Single-Crystal and Microcrystalline Preparation of Clathrate-I Na8Al8Si38 from NaSi + NaAlSi. , 2015, Inorganic chemistry.

[25]  G. Nolas,et al.  Low temperature transport properties and heat capacity of single-crystal Na8Si46 , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  E. Toberer,et al.  Synthesis and optical band gaps of alloyed Si–Ge type II clathrates , 2014 .

[27]  G. Nolas,et al.  Precursor routes to quaternary intermetallics: Synthesis, crystal structure, and physical properties of clathrate-II Cs 8 Na 16 Al 24 Si 112 , 2016 .

[28]  J. Gallmeier,et al.  Notizen: Eine Käfigstruktur als gemeinsames Bauprinzip der Verbindungen K8E46 (E = Si, Ge, Sn) , 1969 .

[29]  Y. Grin,et al.  Oxidation of M4Si4 (M = Na, K) to clathrates by HCl or H2O. , 2007, Journal of the American Chemical Society.

[30]  G. Nolas,et al.  Pressure Effects on the Size of Type-I and Type-II Si-Clathrates Synthesized by Spark Plasma Sintering , 2013 .

[31]  C. Myles,et al.  Framework contraction in Na-stuffed Si(cF136). , 2010, Inorganic chemistry.

[32]  D. VanDerveer,et al.  Temperature dependent structural and transport properties of the type II clathrates A8Na16E136 (A=Cs or Rb and E=Ge or Si) , 2002 .

[33]  S. Bobev,et al.  Synthesis and Characterization of Stable Stoichiometric Clathrates of Silicon and Germanium: Cs8Na16Si136 and Cs8Na16Ge136 , 1999 .

[34]  O. Sankey,et al.  K7.62(1)Si46 and Rb6.15(2)Si46: Two Structure I Clathrates with Fully Occupied Framework Sites , 2000 .