Design and Manufacturing of Tendon-Driven Soft Foam Robots

A design and manufacturing method is described for creating a motor tendon–actuated soft foam robot. The method uses a castable, light, and easily compressible open-cell polyurethane foam, producing a structure capable of large (~70% strain) deformations while requiring low torques to operate ( 0.2 N·m). The soft robot can change shape, by compressing and folding, allowing for complex locomotion with only two actuators. Achievable motions include forward locomotion at 13 mm/s (4.3% of body length per second), turning at 9◦/s, and end-over-end flipping. Hard components, such as motors, are loosely sutured into cavities after molding. This reduces unwanted stiffening of the soft body. This work is the first demonstration of a soft open-cell foam robot locomoting with motor tendon actuators. The manufacturing method is rapid (~30 min per mold), inexpensive (under $3 per robot for the structural foam), and flexible, and will allow a variety of soft foam robotic devices to be produced.

[1]  Radhika Nagpal,et al.  Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation , 2014, Bioinspiration & biomimetics.

[2]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[3]  Alice M. Agogino,et al.  Modular Elastic Lattice Platform for Rapid Prototyping of Tensegrity Robots , 2017 .

[4]  Sanlin S. Robinson,et al.  Poroelastic Foams for Simple Fabrication of Complex Soft Robots , 2015, Advanced materials.

[5]  Jie Zhao,et al.  A water walking robot inspired by water strider , 2012, 2012 IEEE International Conference on Mechatronics and Automation.

[6]  Jun-Ho Oh,et al.  Design of Android type Humanoid Robot Albert HUBO , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[7]  F. Carpi,et al.  Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? , 2011, Bioinspiration & biomimetics.

[8]  Vishesh Vikas,et al.  A Definition of Soft Materials for Use in the Design of Robots. , 2017, Soft Robotics.

[9]  Minoru Asada,et al.  CB2: A child robot with biomimetic body for cognitive developmental robotics , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[10]  Atil Iscen,et al.  Design and evolution of a modular tensegrity robot platform , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[11]  Dario Floreano,et al.  Bio-inspired Tensegrity Soft Modular Robots , 2017, Living Machines.

[12]  Yoji Yamada,et al.  Human-robot contact in the safeguarding space , 1997 .

[13]  Noboru Kikuchi,et al.  Constitutive Modeling and Material Characterization of Polymeric Foams , 1997 .

[14]  Yusuke Maeda,et al.  Caging-based grasping by a robot hand with rigid and soft parts , 2012, 2012 IEEE International Conference on Robotics and Automation.

[15]  MazzolaiBarbara,et al.  Sculpting Soft Machines , 2016 .

[16]  Friedrich Pfeiffer,et al.  Dynamics simulation for a biped robot: modeling and experimental verification , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[17]  LipsonHod,et al.  Challenges and Opportunities for Design, Simulation, and Fabrication of Soft Robots , 2014 .

[18]  Vishesh Vikas,et al.  Model-free control framework for multi-limb soft robots , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[19]  Matteo Cianchetti,et al.  Soft robotics: Technologies and systems pushing the boundaries of robot abilities , 2016, Science Robotics.

[20]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[21]  Paolo Dario,et al.  Biomedical applications of soft robotics , 2018, Nature Reviews Materials.

[22]  Michael F. Ashby,et al.  The mechanical properties of cellular solids , 1983 .

[23]  Yue Chen,et al.  Fabricating biomedical origami: a state-of-the-art review , 2017, International Journal of Computer Assisted Radiology and Surgery.

[24]  Sergi Hernandez Juan,et al.  Tensegrity frameworks: Dynamic analysis review and open problems , 2009 .

[25]  ShahinpoorMohsen,et al.  A Review of Ionic Polymeric Soft Actuators and Sensors , 2014 .

[26]  Albert Wang,et al.  Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot , 2013, 2013 IEEE International Conference on Robotics and Automation.

[27]  Stephen A. Morin,et al.  Using explosions to power a soft robot. , 2013, Angewandte Chemie.

[28]  Wei-Min Shen,et al.  Reconfigurable swarm robots for structural health monitoring: a brief review , 2017, International Journal of Intelligent Robotics and Applications.

[29]  Huai-Ti Lin,et al.  GoQBot: a caterpillar-inspired soft-bodied rolling robot , 2011, Bioinspiration & biomimetics.

[30]  O. Faruque,et al.  Strain Rate Dependent Foam - Constituitive Modeling and Applications , 1997 .

[31]  M. Inaba,et al.  Development of a Humanoid with Distributed Multi-axis Deformation Sense with Full-Body Soft Plastic Foam Cover as Flesh of a Robot , 2008 .

[32]  Metin Sitti,et al.  A miniature ceiling walking robot with flat tacky elastomeric footpads , 2009, 2009 IEEE International Conference on Robotics and Automation.

[33]  Sung-Hoon Ahn,et al.  Modular assembly of soft deployable structures and robots , 2017 .

[34]  Lin Cao,et al.  Soft robotics: Definition and research issues , 2017, 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP).

[35]  Bing Li,et al.  Rise-Rover: A wall-climbing robot with high reliability and load-carrying capacity , 2015, 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[36]  Robert White,et al.  Soft foam robot with caterpillar-inspired gait regimes for terrestrial locomotion , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[37]  Arthur Lebée,et al.  From Folds to Structures, a Review , 2015 .

[38]  Bram Vanderborght,et al.  Expressing Emotions with the Social Robot Probo , 2010, Int. J. Soc. Robotics.

[39]  Liang Yang,et al.  Wall-climbing robot for non-destructive evaluation using impact-echo and metric learning SVM , 2017, International Journal of Intelligent Robotics and Applications.

[40]  Takuya Umedachi,et al.  Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  F ShepherdRobert,et al.  Compliant Buckled Foam Actuators and Application in Patient-Specific Direct Cardiac Compression , 2017 .

[42]  R. V. Ham,et al.  ANTY: the development of an intelligent huggable robot for hospitalized children , 2006 .

[43]  Bo Li,et al.  A Locomotion Robot Driven by Soft Dielectric Elastomer Resonator , 2017, ICIRA.

[44]  Roger D. Quinn,et al.  A small wall-walking robot with compliant, adhesive feet , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[45]  Volker Graefe,et al.  HERMES - an Intelligent Humanoid Robot Designed and Tested for Dependability , 2002, ISER.

[46]  Yoav Sarig,et al.  Robotics of Fruit Harvesting: A State-of-the-art Review , 1993 .

[47]  B Mazzolai,et al.  Design of a biomimetic robotic octopus arm , 2009, Bioinspiration & biomimetics.

[48]  Dimitris C. Lagoudas,et al.  Origami-inspired active structures: a synthesis and review , 2014 .

[49]  On the rate-dependent properties of open-cell polyurethane foams , 2009 .

[50]  M Giorelli,et al.  A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm , 2012, Bioinspiration & biomimetics.

[51]  Huai-Ti Lin,et al.  Towards a biomorphic soft robot: Design constraints and solutions , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[52]  Hod Lipson,et al.  Automatic Design and Manufacture of Soft Robots , 2012, IEEE Transactions on Robotics.

[53]  M Calisti,et al.  Fundamentals of soft robot locomotion , 2017, Journal of The Royal Society Interface.

[54]  Hao Chen,et al.  Design and analysis of a soft mobile robot composed of multiple thermally activated joints driven by a single actuator , 2010, 2010 IEEE International Conference on Robotics and Automation.

[55]  K. Bertoldi,et al.  Buckling-Induced Kirigami. , 2017, Physical review letters.

[56]  Katia Bertoldi,et al.  Kirigami skins make a simple soft actuator crawl , 2018, Science Robotics.

[57]  Jochen Hemming,et al.  Performance Evaluation of a Harvesting Robot for Sweet Pepper , 2017, J. Field Robotics.

[58]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[59]  Thomas Speck,et al.  Development of Novel Foam-Based Soft Robotic Ring Actuators for a Biomimetic Peristaltic Pumping System , 2017, Living Machines.

[60]  Marek P. Michalowski,et al.  Roillo: Creating a Social Robot for Playrooms , 2006, ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication.

[61]  B. Trimmer,et al.  The substrate as a skeleton: ground reaction forces from a soft-bodied legged animal , 2010, Journal of Experimental Biology.

[62]  Ian D. Walker,et al.  Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots , 2003, J. Field Robotics.

[63]  Fumiya Iida,et al.  Soft Manipulators and Grippers: A Review , 2016, Front. Robot. AI.

[64]  CianchettiMatteo,et al.  Soft Robotics Technologies to Address Shortcomings in Today's Minimally Invasive Surgery: The STIFF-FLOP Approach , 2014 .

[65]  K. Iagnemma,et al.  Thermally Tunable, Self-Healing Composites for Soft Robotic Applications , 2014 .

[66]  Shoichi Iikura,et al.  Development of flexible microactuator and its applications to robotic mechanisms , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[67]  Lingqi Zeng,et al.  Design of foam covering for robotic arms to ensure human safety , 2008, 2008 Canadian Conference on Electrical and Computer Engineering.

[68]  Richard J. Malak,et al.  The State of the Art of Origami-Inspired Products: A Review , 2016 .

[69]  Daniela Rus,et al.  Hydraulic Autonomous Soft Robotic Fish for 3D Swimming , 2014, ISER.

[70]  T Umedachi,et al.  Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots , 2016, Bioinspiration & biomimetics.

[71]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[72]  Vishesh Vikas,et al.  Design and Locomotion Control of a Soft Robot Using Friction Manipulation and Motor–Tendon Actuation , 2015, IEEE Transactions on Robotics.

[73]  Simon Ouellet,et al.  Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions , 2006 .

[74]  Sergi Hernandez Juan,et al.  Tensegrity frameworks: Static analysis review. , 2008 .

[75]  Robert J. Wood,et al.  Soft Robotic Grippers for Biological Sampling on Deep Reefs , 2016, Soft robotics.

[76]  G. J. Monkman ROBOTIC COMPLIANCE CONTROL USING MEMORY FOAMS , 1991 .

[77]  Hiroshi Ishiguro,et al.  Development of an android robot for studying human-robot interaction , 2004 .

[78]  MajidiCarmel,et al.  Soft Robotics: A Perspective—Current Trends and Prospects for the Future , 2014 .

[79]  Richard M. Voyles TerminatorBot: a robot with dual-use arms for manipulation and locomotion , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[80]  Matteo Cianchetti,et al.  On Intrinsic Safety of Soft Robots , 2017, Front. Robot. AI.

[81]  Dirk Lefeber,et al.  The Huggable Robot Probo, a Multi-disciplinary Research Platform , 2008, Eurobot Conference.

[82]  J. Des Tedford,et al.  Developments in robot grippers for soft fruit packing in New Zealand , 1990, Robotica.

[83]  Kinji Asaka,et al.  A snake-like swimming robot using IPMC actuator/sensor , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[84]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[85]  R. Wood,et al.  Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[86]  Kinji Asaka,et al.  Development of a Rajiform Swimming Robot using Ionic Polymer Artificial Muscles , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[87]  Cornel Sultan,et al.  Controllable tensegrity: a new class of smart structures , 1997, Smart Structures.

[88]  Sanlin S. Robinson,et al.  Morphing Metal and Elastomer Bicontinuous Foams for Reversible Stiffness, Shape Memory, and Self‐Healing Soft Machines , 2016, Advanced materials.

[89]  Yael Edan,et al.  Harvesting Robots for High‐value Crops: State‐of‐the‐art Review and Challenges Ahead , 2014, J. Field Robotics.