Exact algorithms for s-club finding and related problems

The Clique problem is one of the best-studied problems in computer science. However, there exist only few studies concerning the important Clique generalization, called the s-Club problem. In particular there have been no intensive investigations with respect to the parameterized complexity of this problem. In this thesis we show that s-Club is fixed-parameter tractable with respect to the number of vertices in the solution. In terms of polynomial time data reduction, we show that s-Club does not admit a polynomial many-to-one kernel. In contrast to that we give a cubic-vertex Turing kernel. In this context we also show an interesting connection to the approximation of a solution for s-Club, and give a combined algorithm to exploit this connection. Furthermore we study the complexity of s-Club on some restricted graph classes. In order to obtain efficient fixed-parameter algorithm, it is often useful to change the parameterization. Therefore, we analyze s-Club with a dual parameterization, which we define as the s-Club Vertex Deletion problem. We show that this problem is fixed-parameter tractable with respect to the number of vertices in the solution. We also introduce the s-Club Cluster Vertex Deletion problem, which is a generalization of the Cluster Vertex Deletion problem. For this problem we show NP-completeness and fixed-parameter tractability with respect to the combined parameter number of vertices in the solution and s.

[1]  Jan van Leeuwen,et al.  Diameter increase caused by edge deletion , 1987, J. Graph Theory.

[2]  Hannes Moser,et al.  Finding optimal solutions for covering and matching problems , 2010 .

[3]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[4]  Takeshi Tokuyama,et al.  Geometric algorithms for a minimum cost assignment problem , 1991, SCG '91.

[5]  Jitender S. Deogun,et al.  An Approximation Algorithm for Clustering Graphs with Dominating Diametral Path , 1997, Inf. Process. Lett..

[6]  R. M. Damerell On Moore graphs , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[8]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[9]  Gilbert Laporte,et al.  Heuristics for finding k-clubs in an undirected graph , 2000, Comput. Oper. Res..

[10]  Sergiy Butenko,et al.  Clique Relaxations in Social Network Analysis: The Maximum k-Plex Problem , 2011, Oper. Res..

[11]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[12]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[13]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[14]  Arthur M. Farley,et al.  Partitioning trees: Matching, domination, and maximum diameter , 2004, International Journal of Computer & Information Sciences.

[15]  Rolf Niedermeier,et al.  Algorithms and Experiments for Clique Relaxations-Finding Maximum s-Plexes , 2009, SEA.

[16]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[17]  Hokky Situngkir,et al.  Small World Network of Athletes: Graph Representation of the World Professional Tennis Player , 2007 .

[18]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[19]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..

[20]  D. Fell,et al.  The small world of metabolism , 2000, Nature Biotechnology.

[21]  Christian Komusiewicz,et al.  Fixed-Parameter Algorithms for Cluster Vertex Deletion , 2008, LATIN.

[22]  Michael R. Fellows,et al.  Large Planar Graphs with Given Diameter and Maximum Degree , 1995, Discret. Appl. Math..

[23]  R. Alba A graph‐theoretic definition of a sociometric clique† , 1973 .

[24]  Rolf Niedermeier,et al.  A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems , 2009, MFCS.

[25]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[26]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[27]  Nasrullah Memon,et al.  Structural Analysis and Destabilizing Terrorist Networks , 2006, DMIN.

[28]  E. A. Dinic Algorithm for solution of a problem of maximal flow in a network with power estimation , 1970 .

[29]  Yong Gao,et al.  A note on the hardness of graph diameter augmentation problems , 2009, ArXiv.

[30]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[31]  Udi Rotics,et al.  Clique-width minimization is NP-hard , 2006, STOC '06.

[32]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[33]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[34]  Chung-Lun Li,et al.  On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems , 1992, Oper. Res. Lett..

[35]  Makoto Imase,et al.  Design to Minimize Diameter on Building-Block Network , 1981, IEEE Transactions on Computers.

[36]  Jose M. Montoya Ricard V. Sole,et al.  Small world patterns in food webs. , 2000, Journal of theoretical biology.

[37]  Ján Plesník,et al.  One method for proving the impossibility of certain Moore graphs , 1974, Discret. Math..

[38]  S. M. Eker,et al.  Associative-Commutative Matching Via Bipartite Graph Matching , 1995, Comput. J..

[39]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[40]  Celina M. H. de Figueiredo,et al.  On the generation of bicliques of a graph , 2007, Discret. Appl. Math..

[41]  Sang-il Oum,et al.  Approximating rank-width and clique-width quickly , 2008, ACM Trans. Algorithms.

[42]  Dieter Kratsch,et al.  On treewidth approximations , 2004, Discret. Appl. Math..

[43]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs V: On Closing the Gap Between Definability and Recognizability , 1991, Theor. Comput. Sci..

[44]  Udi Rotics,et al.  On the Clique-Width of Perfect Graph Classes , 1999, WG.

[45]  Bojan Mohar,et al.  On approximating the maximum diameter ratio of graphs , 2002, Discret. Math..

[46]  Charles Delorme,et al.  Large bipartite graphs with given degree and diameter , 1985, J. Graph Theory.

[47]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[48]  Georg Gottlob,et al.  Width Parameters Beyond Tree-width and their Applications , 2008, Comput. J..

[49]  R. K. Mesta,et al.  Abstract , 1997, Veterinary Record.

[50]  B. Kogut,et al.  The Small World of Germany and the Durability of National Networks , 2001, American Sociological Review.

[51]  Lorna Stewart,et al.  Clustering Bipartite, Chordal Graphs: Complexity, Sequential, Parallel Algorithms , 1999, Discret. Appl. Math..

[52]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[53]  Stanley Milgram,et al.  An Experimental Study of the Small World Problem , 1969 .

[54]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[55]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[56]  H. Scheraga,et al.  Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. , 1976, Macromolecules.

[57]  Bin Wu,et al.  A Parallel Algorithm for Enumerating All the Maximal k -Plexes , 2007, PAKDD Workshops.

[58]  Christian Komusiewicz,et al.  Isolation concepts for efficiently enumerating dense subgraphs , 2009, Theor. Comput. Sci..

[59]  Sergiy Butenko,et al.  Novel Approaches for Analyzing Biological Networks , 2005, J. Comb. Optim..

[60]  Henning Fernau,et al.  Kernel(s) for Problems with No Kernel: On Out-Trees with Many Leaves , 2009, STACS.

[61]  William R. Heller,et al.  The Planar Package Planner for System Designers , 1982, DAC 1982.

[62]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[63]  Paul Erdös,et al.  Maximum degree in graphs of diameter 2 , 1980, Networks.

[64]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[65]  Marc Noy,et al.  Computing the Tutte Polynomial on Graphs of Bounded Clique-Width , 2005, WG.

[66]  Daniel Lokshtanov,et al.  New Methods in Parameterized Algorithms and Complexity , 2009 .

[67]  Stephen B. Seidman,et al.  A graph‐theoretic generalization of the clique concept* , 1978 .

[68]  Srinivas Pasupuleti,et al.  Detection of Protein Complexes in Protein Interaction Networks Using n-Clubs , 2008, EvoBIO.

[69]  Christophe Claramunt,et al.  Topological Analysis of Urban Street Networks , 2004 .

[70]  Bruno Courcelle,et al.  On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..

[71]  Gilbert Laporte,et al.  An exact algorithm for the maximum k-club problem in an undirected graph , 1999, Eur. J. Oper. Res..

[72]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Anders Yeo,et al.  Kernel Bounds for Disjoint Cycles and Disjoint Paths , 2009, ESA.