Cross-species communication via agr controls phage susceptibility in Staphylococcus aureus.

[1]  T. Stehle,et al.  Genetic diversity of Staphylococcus aureus wall teichoic acid glycosyltransferases affects immune recognition , 2022, Microbial genomics.

[2]  B. Bassler,et al.  Natural and synthetic inhibitors of a phage-encoded quorum-sensing receptor affect phage–host dynamics in mixed bacterial communities , 2022, bioRxiv.

[3]  P. García,et al.  Understanding the Mechanisms That Drive Phage Resistance in Staphylococci to Prevent Phage Therapy Failure , 2022, Viruses.

[4]  R. Schooley,et al.  Phage Therapy for Antibiotic-Resistant Bacterial Infections. , 2021, Annual review of medicine.

[5]  R. Schooley,et al.  Successful Treatment of Staphylococcus aureus Prosthetic Joint Infection with Bacteriophage Therapy , 2021, Viruses.

[6]  H. Rohde,et al.  Staphylococcus epidermidis clones express Staphylococcus aureus-type wall teichoic acid to shift from a commensal to pathogen lifestyle , 2021, Nature Microbiology.

[7]  M. Chisnall,et al.  The effect of Quorum sensing inhibitors on the evolution of CRISPR-based phage immunity in Pseudomonas aeruginosa , 2021, The ISME Journal.

[8]  G. A. van der Marel,et al.  Impact of Glycan Linkage to Staphylococcus aureus Wall Teichoic Acid on Langerin Recognition and Langerhans Cell Activation , 2021, ACS infectious diseases.

[9]  T. Stehle,et al.  Cell wall glycosylation in Staphylococcus aureus: targeting the tar glycosyltransferases. , 2021, Current opinion in structural biology.

[10]  T. Stinear,et al.  From cloning to mutant in 5 days: rapid allelic exchange in Staphylococcus aureus , 2021, Access microbiology.

[11]  J. Parkhill,et al.  Screening for Highly Transduced Genes in Staphylococcus aureus Revealed Both Lateral and Specialized Transduction , 2020, bioRxiv.

[12]  M. Akiyama,et al.  Staphylococcus Agr virulence is critical for epidermal colonization and associates with atopic dermatitis development , 2020, Science Translational Medicine.

[13]  N. V. van Sorge,et al.  Wall Teichoic Acid in Staphylococcus aureus Host Interaction. , 2020, Trends in microbiology.

[14]  A. Horswill,et al.  Structure-Activity-Relationship Studies of Small Molecule Modulators of the Staphylococcal Accessory Gene Regulator. , 2020, Journal of medicinal chemistry.

[15]  J. Iredell,et al.  Safety of bacteriophage therapy in severe Staphylococcus aureus infection , 2020, Nature Microbiology.

[16]  M. Skurnik,et al.  Bioprospecting Staphylococcus Phages with Therapeutic and Bio-Control Potential , 2020, Viruses.

[17]  C. Wolz,et al.  Temperate Phages of Staphylococcus aureus , 2019, Microbiology spectrum.

[18]  P. Andersen,et al.  Effect of Co-inhabiting Coagulase Negative Staphylococci on S. aureus agr Quorum Sensing, Host Factor Binding, and Biofilm Formation , 2019, Front. Microbiol..

[19]  K. Miyanaga,et al.  Silviavirus phage ɸMR003 displays a broad host range against methicillin-resistant Staphylococcus aureus of human origin , 2019, Applied Microbiology and Biotechnology.

[20]  A. Górski,et al.  Factors determining phage stability/activity: challenges in practical phage application , 2019, Expert review of anti-infective therapy.

[21]  A. Horswill,et al.  Commensal Staphylococci Influence Staphylococcus aureus Skin Colonization and Disease. , 2019, Trends in microbiology.

[22]  M. Skurnik,et al.  Genomic characterization of four novel Staphylococcus myoviruses , 2019, Archives of Virology.

[23]  K. Zengler,et al.  Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis , 2019, Science Translational Medicine.

[24]  H. Ingmer,et al.  Identification of autoinducing thiodepsipeptides from staphylococci enabled by native chemical ligation , 2019, Nature Chemistry.

[25]  T. Read,et al.  Determinants of Phage Host Range in Staphylococcus Species , 2019, Applied and Environmental Microbiology.

[26]  B. Bassler,et al.  Phage-Encoded LuxR-Type Receptors Responsive to Host-Produced Bacterial Quorum-Sensing Autoinducers , 2019, mBio.

[27]  P. Talaga,et al.  Glycosylation of Staphylococcus aureus cell wall teichoic acid is influenced by environmental conditions , 2019, Scientific Reports.

[28]  B. Bassler,et al.  A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision , 2019, Cell.

[29]  C. Wolz,et al.  Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity , 2018, Nature.

[30]  Michael Otto,et al.  Pathogen elimination by probiotic Bacillus via signaling interference , 2018, Nature.

[31]  K. Miyanaga,et al.  Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twort-like phages ɸSA012 and ɸSA039 , 2018, Applied Microbiology and Biotechnology.

[32]  A. Bhunia,et al.  Tunicamycin Mediated Inhibition of Wall Teichoic Acid Affects Staphylococcus aureus and Listeria monocytogenes Cell Morphology, Biofilm Formation and Virulence , 2018, Front. Microbiol..

[33]  G. Núñez,et al.  Application of an agr-Specific Antivirulence Compound as Therapy for Staphylococcus aureus-Induced Inflammatory Skin Disease , 2018, The Journal of infectious diseases.

[34]  A. Horswill,et al.  Coagulase-Negative Staphylococcal Strain Prevents Staphylococcus aureus Colonization and Skin Infection by Blocking Quorum Sensing. , 2017, Cell host & microbe.

[35]  Q. Ji,et al.  Rapid and Efficient Genome Editing in Staphylococcus aureus by Using an Engineered CRISPR/Cas9 System. , 2017, Journal of the American Chemical Society.

[36]  C. Wolz,et al.  Wall teichoic acids mediate increased virulence in Staphylococcus aureus , 2017, Nature Microbiology.

[37]  Rotem Sorek,et al.  Communication between viruses guides lysis-lysogeny decisions , 2016, Nature.

[38]  P. Andersen,et al.  Cross-Talk between Staphylococcus aureus and Other Staphylococcal Species via the agr Quorum Sensing System , 2016, Front. Microbiol..

[39]  K. P. Lemon,et al.  Staphylococcus aureus Shifts toward Commensalism in Response to Corynebacterium Species , 2016, Front. Microbiol..

[40]  D. Church,et al.  Human infections due to Staphylococcus pseudintermedius, an emerging zoonosis of canine origin: report of 24 cases. , 2016, Diagnostic microbiology and infectious disease.

[41]  E. Hall,et al.  Characterization of novel Staphylococcus aureus lytic phage and defining their combinatorial virulence using the OmniLog® system , 2016, Bacteriophage.

[42]  C. Wolz,et al.  An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus , 2016, Scientific Reports.

[43]  C. Cosseau,et al.  Proteobacteria from the human skin microbiota: Species-level diversity and hypotheses , 2016, One health.

[44]  A. Peschel,et al.  An accessory wall teichoic acid glycosyltransferase protects Staphylococcus aureus from the lytic activity of Podoviridae , 2015, Scientific Reports.

[45]  J. Casadesús,et al.  Epigenetic Control of Salmonella enterica O-Antigen Chain Length: A Tradeoff between Virulence and Bacteriophage Resistance , 2015, PLoS genetics.

[46]  K. Becker,et al.  Coagulase-Negative Staphylococci , 2014, Clinical Microbiology Reviews.

[47]  S. Walker,et al.  Wall teichoic acids of gram-positive bacteria. , 2013, Annual review of microbiology.

[48]  Anthony J. Brzoska,et al.  Two-Plasmid Vector System for Independently Controlled Expression of Green and Red Fluorescent Fusion Proteins in Staphylococcus aureus , 2013, Applied and Environmental Microbiology.

[49]  Timothy C. Meredith,et al.  Exposing a chink in the armor of methicillin-resistant Staphylococcus aureus , 2013 .

[50]  A. Peschel,et al.  Wall Teichoic Acid-Dependent Adsorption of Staphylococcal Siphovirus and Myovirus , 2011, Journal of bacteriology.

[51]  J. Segre,et al.  The skin microbiome , 2011, Nature Reviews Microbiology.

[52]  J. McCormick,et al.  Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci , 2011, Proceedings of the National Academy of Sciences.

[53]  O. Holst,et al.  Glycosylation of Wall Teichoic Acid in Staphylococcus aureus by TarM* , 2010, The Journal of Biological Chemistry.

[54]  F. Lowy Staphylococcus aureus infections. , 2009, The New England journal of medicine.

[55]  R. Novick,et al.  Quorum sensing in staphylococci. , 2008, Annual review of genetics.

[56]  D. Sturdevant,et al.  RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. , 2008, Molecular cell.

[57]  Timothy C. Meredith,et al.  Late-Stage Polyribitol Phosphate Wall Teichoic Acid Biosynthesis in Staphylococcus aureus , 2008, Journal of bacteriology.

[58]  M. Arnaud,et al.  New Vector for Efficient Allelic Replacement in Naturally Nontransformable, Low-GC-Content, Gram-Positive Bacteria , 2004, Applied and Environmental Microbiology.

[59]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[60]  W. Edelmann,et al.  Seamless Ligation Cloning Extract (SLiCE) cloning method. , 2014, Methods in molecular biology.