Gait Analysis for Human Identification through Manifold Learning and HMM

Gait recognition is a process of identifying individuals by the way they walk. Gait is often used as a unobstrusive biometric offering the possibility to identify people at a distance without any interaction or co-operation with the subject. This paper presents a novel method for both automatic viewpoint and person identification using only the silhouette sequence of gait. The gait silhouettes are nonlinearly transformed into low dimensional embedding and the dynamics in time-series images are modeled by HMM in the corresponding embedding space. The experimental results demonstrate that the proposed algorithm is an encouraging progress for the gait analysis research.

[1]  Yanxi Liu,et al.  Gait Sequence Analysis Using Frieze Patterns , 2002, ECCV.

[2]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[3]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[4]  Tieniu Tan,et al.  Automatic gait recognition based on statistical shape analysis , 2003, IEEE Trans. Image Process..

[5]  Mark S. Nixon,et al.  Statistical gait description via temporal moments , 2000, 4th IEEE Southwest Symposium on Image Analysis and Interpretation.

[6]  Adam Prügel-Bennett,et al.  New Area Based Metrics for Gait Recognition , 2001, AVBPA.

[7]  W. Eric L. Grimson,et al.  Gait analysis for recognition and classification , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[8]  Rui Li,et al.  Articulated Pose Estimation in a Learned Smooth Space of Feasible Solutions , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[9]  Mark S. Nixon,et al.  Using Gait as a Biometric, via Phase-weighted Magnitude Spectra , 1997, AVBPA.

[10]  Tieniu Tan,et al.  Fusion of static and dynamic body biometrics for gait recognition , 2004, IEEE Trans. Circuits Syst. Video Technol..

[11]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[12]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[13]  Mark S. Nixon,et al.  Automatic Gait Recognition by Symmetry Analysis , 2001, AVBPA.

[14]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[15]  Tieniu Tan,et al.  Silhouette Analysis-Based Gait Recognition for Human Identification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Neil D. Lawrence,et al.  Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.

[17]  M. Trivedi,et al.  Manifold analysis of facial gestures for face recognition , 2003, WBMA '03.

[18]  Nanning Zheng,et al.  Gait History Image: A Novel Temporal Template for Gait Recognition , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[19]  Sudeep Sarkar,et al.  The gait identification challenge problem: data sets and baseline algorithm , 2002, Object recognition supported by user interaction for service robots.

[20]  Larry S. Davis,et al.  EigenGait: Motion-Based Recognition of People Using Image Self-Similarity , 2001, AVBPA.

[21]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, SIGGRAPH 2004.

[22]  Chris J. Harris,et al.  Statistical gait recognition via temporal moments , 2000 .

[23]  Robert T. Collins,et al.  Silhouette-based human identification from body shape and gait , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[24]  Dimitrios Hatzinakos,et al.  An angular transform of gait sequences for gait assisted recognition , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[25]  Larry S. Davis,et al.  A Robust Background Subtraction and Shadow Detection , 1999 .

[26]  Sudeep Sarkar,et al.  The humanID gait challenge problem: data sets, performance, and analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Ahmed M. Elgammal Nonlinear Generative Models for Dynamic Shape and Dynamic Appearance , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[28]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.