Nanomechanics of cation-π interactions in aqueous solution.

[1]  J. Israelachvili,et al.  Recent advances in the surface forces apparatus (SFA) technique , 2010 .

[2]  P. B. Armentrout,et al.  Absolute Binding Energies of Alkali-Metal Cation Complexes with Benzene Determined by Threshold Collision-Induced Dissociation Experiments and ab Initio Theory , 2000 .

[3]  T. O’Halloran,et al.  Cu(I) recognition via cation-pi and methionine interactions in CusF. , 2008, Nature chemical biology.

[4]  W. Knoll,et al.  Measurement of ligand-receptor interactions. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[5]  H. Lester,et al.  A Cation–π Interaction between Extracellular TEA and an Aromatic Residue in Potassium Channels , 2006, The Journal of general physiology.

[6]  D. A. Dougherty,et al.  The Cationminus signpi Interaction. , 1997, Chemical reviews.

[7]  Hongbo Zeng,et al.  Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water , 2010, Proceedings of the National Academy of Sciences.

[8]  D. Baltimore,et al.  Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides , 1993, Nature.

[9]  Yizhak Marcus,et al.  A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes , 1994 .

[10]  Dennis A Dougherty,et al.  Cation-pi interactions in ligand recognition and catalysis. , 2002, Trends in pharmacological sciences.

[11]  Yang Liu,et al.  Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus. , 2012, Biomaterials.

[12]  Ronghu Wu,et al.  Investigation of cation-pi interactions in biological systems. , 2008, Journal of the American Chemical Society.

[13]  N. Unwin Acetylcholine receptor channel imaged in the open state , 1995, Nature.

[14]  C. David Sherrill,et al.  Potential energy curves for cation-pi interactions: off-axis configurations are also attractive. , 2009, The journal of physical chemistry. A.

[15]  C. Deakyne,et al.  Unconventional ionic hydrogen bonds. 2. NH+.cntdot..cntdot..cntdot..pi.. Complexes of onium ions with olefins and benzene derivatives , 1985 .

[16]  K. Houk,et al.  Substituent effects in cation/pi interactions and electrostatic potentials above the centers of substituted benzenes are due primarily to through-space effects of the substituents. , 2009, Journal of the American Chemical Society.

[17]  J. Forman,et al.  Molecular recognition in aqueous media. New binding studies provide further insights into the cation-π interaction and related phenomena , 1993 .

[18]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[19]  J. Galpin,et al.  Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels. , 2011, Nature communications.

[20]  F. Diederich,et al.  Aromatic rings in chemical and biological recognition: energetics and structures. , 2011, Angewandte Chemie.

[21]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[22]  Sandro Mecozzi,et al.  Cation−π Interactions in Simple Aromatics: Electrostatics Provide a Predictive Tool , 1996 .

[23]  R. MacKinnon,et al.  Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. , 1990, Science.

[24]  L. Pilione,et al.  Liquid nitrogen enhancement of partially annealed fission tracks in glass , 1976, Nature.

[25]  D A Dougherty,et al.  Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Israelachvili,et al.  Direct measurement of long range forces between two mica surfaces in aqueous KNO3 solutions , 1976, Nature.

[27]  L. Salonen,et al.  Aromatische Ringe in chemischer und biologischer Erkennung: Energien und Strukturen , 2011 .

[28]  Douglas W. Fuerstenau,et al.  Mutual coagulation of colloidal dispersions , 1966 .

[29]  G. Thomas New structural insights from Raman spectroscopy of proteins and their assemblies. , 2002, Biopolymers.

[30]  H. Takeuchi,et al.  Interactions between histidine and tryptophan residues in the BM2 proton channel from influenza B virus. , 2009, Journal of biochemistry.

[31]  R. MacKinnon,et al.  The aromatic binding site for tetraethylammonium ion on potassium channels , 1992, Neuron.

[32]  Hongbo Zeng,et al.  Adhesion mechanism in a DOPA-deficient foot protein from green mussels(). , 2012, Soft matter.

[33]  B. Malissen,et al.  How much can a T‐cell antigen receptor adapt to structurally distinct antigenic peptides? , 2007, The EMBO journal.

[34]  G Narahari Sastry,et al.  Cation [M = H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] interactions with the aromatic motifs of naturally occurring amino acids: a theoretical study. , 2005, The journal of physical chemistry. A.

[35]  A. Laederach,et al.  The role of cation-pi interactions in biomolecular association. Design of peptides favoring interactions between cationic and aromatic amino acid side chains. , 2001, Journal of the American Chemical Society.

[36]  Hendrik Zipse,et al.  Explicit solvent effect on cation-pi interactions: a first principle investigation. , 2009, The journal of physical chemistry. B.

[37]  J. Galpin,et al.  Contributions of Counter-Charge in a Potassium Channel Voltage-Sensor Domain , 2011, Nature chemical biology.

[38]  S. Shinkai,et al.  On the Origin of High Ionophoricity of 1,3-Alternate Calix[4]arenes: .pi.-donor Participation in Complexation of Cations and Evidence for Metal-Tunneling through the Calix[4]arene Cavity , 1994 .

[39]  J. Gallivan,et al.  A Computational Study of Cation−π Interactions vs Salt Bridges in Aqueous Media: Implications for Protein Engineering , 2000 .

[40]  D A Dougherty,et al.  A mechanism for ion selectivity in potassium channels: computational studies of cation-pi interactions. , 1993, Science.

[41]  W. S. Caldwell,et al.  Molecular recognition in nicotinic acetylcholine receptors: the importance of pi-cation interactions. , 1999, Journal of medicinal chemistry.

[42]  D. A. Dougherty,et al.  Cation-π Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp , 1996, Science.

[43]  Henry A. Lester,et al.  Nicotine Binding to Brain Receptors Requires a Strong Cation-π Interaction , 2009, Nature.