Tuning thermal transport in nanotubes with topological defects

Using the atomistic nonequilibrium Green’s function, we find that thermal conductance of carbon nanotubes with presence of topological lattice imperfects is remarkably reduced, due to the strong Rayleigh scattering of high-frequency phonons. Phonon transmission across multiple defects behaves as a cascade scattering based with the random phase approximation. We elucidate that phonon scattering by structural defects is related to the spatial fluctuations of local vibrational density of states (LVDOS). An effective method of tuning thermal transport in low-dimensional systems through the modulation of LVDOS has been proposed. Our findings provide insights into experimentally controlling thermal transport in nanoscale devices.

[1]  Jian-Sheng Wang,et al.  Anomalous thermal transport in disordered harmonic chains and carbon nanotubes , 2011 .

[2]  J. Schumann,et al.  Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. , 2010, Nature materials.

[3]  Ronggui Yang,et al.  Tuning the thermal conductivity of polymers with mechanical strains , 2010 .

[4]  D. Broido,et al.  Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene , 2010, 1003.2236.

[5]  L. Berthier,et al.  When gel and glass meet: a mechanism for multistep relaxation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  G. Stoltz,et al.  Reducing the thermal conductivity of carbon nanotubes below the random isotope limit , 2009, 0908.3958.

[7]  Michael C. Böhm,et al.  The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations , 2009, Nanotechnology.

[8]  N. Mingo,et al.  Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: is localization observable? , 2008, Physical review letters.

[9]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[10]  Jian-Sheng Wang,et al.  Single-mode phonon transmission in symmetry-broken carbon nanotubes: Role of phonon symmetries , 2008, 0807.4212.

[11]  J. Lü,et al.  Quantum thermal transport in nanostructures , 2008, 0802.2761.

[12]  Deepak Srivastava,et al.  Phonon transmission through defects in carbon nanotubes from first principles , 2008 .

[13]  Takahiro Yamamoto,et al.  Defect-induced circulating thermal current in graphene with nanosized width , 2008 .

[14]  Gang Zhang,et al.  Ultralow thermal conductivity of isotope-doped silicon nanowires. , 2007, Nano letters.

[15]  A. Krasheninnikov,et al.  Engineering of nanostructured carbon materials with electron or ion beams. , 2007, Nature materials.

[16]  Baowen Li,et al.  Thermal logic gates: computation with phonons. , 2007, Physical review letters.

[17]  Jennifer R. Lukes,et al.  Thermal Conductivity of Individual Single-Wall Carbon Nanotubes , 2007 .

[18]  K. Goodson,et al.  Ordering Up the Minimum Thermal Conductivity of Solids , 2007, Science.

[19]  Jian-Sheng Wang,et al.  Nonequilibrium Green's function method for thermal transport in junctions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Takahiro Yamamoto,et al.  Nonequilibrium Green's function approach to phonon transport in defective carbon nanotubes. , 2006, Physical review letters.

[21]  Jian-Sheng Wang,et al.  Nonequilibrium Green’s function approach to mesoscopic thermal transport , 2006, cond-mat/0605028.

[22]  Jian-Sheng Wang,et al.  Carbon nanotube thermal transport: Ballistic to diffusive , 2005, cond-mat/0510565.

[23]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[24]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[25]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical review letters.

[26]  A. Rinzler,et al.  Thermoelectric Power of Single-Walled Carbon Nanotubes , 1998 .

[27]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[28]  N. Mingo,et al.  First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity. , 2009, Nano letters.