A nonlinear internal model design for heterogeneous second-order multi-agent systems with unknown leader

This paper focuses on robust nonlinear coordination of heterogeneous uncertain second-order multi-agent systems subject to directed communication topologies. We develop a nonlinear internal model principle based approach for the problem in a framework of cooperative global robust output regulation, independent of the a priori of the leader dynamics information except its order. As a major consequence, this study assures, by means of establishing a strict-Lyapunov function for the closed-loop system, not only a specified exponential convergence rate but also tolerable bounds of unmodeled disturbances. Hence, the former guarantees an appealing performance and the latter an important robustness property.

[1]  Lorenzo Marconi,et al.  Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory , 2013, 52nd IEEE Conference on Decision and Control.

[2]  G. Kreisselmeier Adaptive observers with exponential rate of convergence , 1977 .

[3]  Jie Huang,et al.  Nonlinear Output Regulation: Theory and Applications , 2004 .

[4]  Yiguang Hong,et al.  Distributed Observers Design for Leader-Following Control of Multi-Agent Networks (Extended Version) , 2017, 1801.00258.

[5]  Warren E. Dixon,et al.  Saturated RISE Feedback Control for a Class of Second-Order Nonlinear Systems , 2014, IEEE Transactions on Automatic Control.

[6]  Jie Huang,et al.  Cooperative global output regulation of heterogeneous second-order nonlinear uncertain multi-agent systems , 2013, Autom..

[7]  M. Malisoff,et al.  Constructions of Strict Lyapunov Functions , 2009 .

[8]  Jie Huang,et al.  Remarks on the robust output regulation problem for nonlinear systems , 2001, IEEE Trans. Autom. Control..

[9]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[10]  Xinghu Wang,et al.  Output regulation of nonlinear output feedback systems with exponential parameter convergence , 2016, Syst. Control. Lett..

[11]  Guanrong Chen,et al.  Adaptive second-order consensus of networked mobile agents with nonlinear dynamics , 2011, Autom..

[12]  Darren M. Dawson,et al.  A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems , 2004, Autom..

[13]  Jin Zhou,et al.  Synchronization of coupled harmonic oscillators with local instantaneous interaction , 2012, Autom..

[14]  Antonella Ferrara,et al.  Output tracking control of uncertain nonlinear second-order systems , 1997, Autom..

[15]  Dabo Xu,et al.  Constructive Nonlinear Internal Models for Global Robust Output Regulation and Application , 2018, IEEE Transactions on Automatic Control.

[16]  Zhiyong Chen,et al.  Semi-Global Consensus of Nonlinear Second-Order Multi-Agent Systems With Measurement Output Feedback , 2014, IEEE Transactions on Automatic Control.

[17]  Ziyang Meng,et al.  Robust cooperative tracking for multiple non-identical second-order nonlinear systems , 2013, Autom..

[18]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[19]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[20]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[21]  Wei Ren On Consensus Algorithms for Double-Integrator Dynamics , 2008, IEEE Trans. Autom. Control..

[22]  Eduardo Sontag,et al.  Changing supply functions in input/state stable systems , 1995, IEEE Trans. Autom. Control..

[23]  Xinghu Wang,et al.  Global robust stabilization of nonlinear cascaded systems with integral ISS dynamic uncertainties , 2017, Autom..

[24]  Jinde Cao,et al.  Second-order leader-following consensus of nonlinear multi-agent systems via pinning control , 2010, Syst. Control. Lett..

[25]  Zhong-Ping Jiang,et al.  A Distributed Control Approach to A Robust Output Regulation Problem for Multi-Agent Linear Systems , 2010, IEEE Transactions on Automatic Control.

[26]  Antonio Loría,et al.  Observers are Unnecessary for Output-Feedback Control of Lagrangian Systems , 2016, IEEE Transactions on Automatic Control.

[27]  Dennis S. Bernstein,et al.  Adaptive stabilization of a class of nonlinear systems with nonparametric uncertainty , 2001, IEEE Trans. Autom. Control..

[28]  Miroslav Krstic,et al.  Stabilization and robustness analysis for a chain of exponential integrators using strict Lyapunov functions , 2016, Autom..

[29]  Haibo Ji,et al.  Robust consensus tracking for a class of heterogeneous second‐order nonlinear multi‐agent systems , 2015 .

[30]  Frank Allgöwer,et al.  An internal model principle is necessary and sufficient for linear output synchronization , 2011, Autom..

[31]  Stephen A. Billings,et al.  Suppressing Resonant Vibrations Using Nonlinear Springs and Dampers , 2009 .

[32]  Ziyang Meng,et al.  Coordinated output regulation of heterogeneous linear systems under switching topologies , 2014, Autom..

[33]  Jie Huang,et al.  Cooperative adaptive output regulation for a class of nonlinear uncertain multi-agent systems with unknown leader , 2013, Syst. Control. Lett..