Carbon mineral ecology: Predicting the undiscovered minerals of carbon

Abstract Studies in mineral ecology exploit mineralogical databases to document diversity-distribution relationships of minerals—relationships that are integral to characterizing “Earth-like” planets. As carbon is the most crucial element to life on Earth, as well as one of the defining constituents of a planet’s near-surface mineralogy, we focus here on the diversity and distribution of carbon-bearing minerals. We applied a Large Number of Rare Events (LNRE) model to the 403 known minerals of carbon, using 82 922 mineral species/locality data tabulated in http://mindat.org (as of 1 January 2015). We find that all carbon-bearing minerals, as well as subsets containing C with O, H, Ca, or Na, conform to LNRE distributions. Our model predicts that at least 548 C minerals exist on Earth today, indicating that at least 145 carbon-bearing mineral species have yet to be discovered. Furthermore, by analyzing subsets of the most common additional elements in carbon-bearing minerals (i.e., 378 C + O species; 282 C + H species; 133 C + Ca species; and 100 C + Na species), we predict that approximately 129 of these missing carbon minerals contain oxygen, 118 contain hydrogen, 52 contain calcium, and more than 60 contain sodium. The majority of these as yet undescribed minerals are predicted to be hydrous carbonates, many of which may have been overlooked because they are colorless, poorly crystalized, and/or water-soluble. We tabulate 432 chemical formulas of plausible as yet undiscovered carbon minerals, some of which will be natural examples of known synthetic compounds, including carbides such as calcium carbide (CaC2), crystalline hydrocarbons such as pyrene (C16H10), and numerous oxalates, formates, anhydrous carbonates, and hydrous carbonates. Many other missing carbon minerals will be isomorphs of known carbon minerals, notably of the more than 100 different hydrous carbonate structures. Surveys of mineral localities with the greatest diversity of carbon minerals, coupled with information on varied C mineral occurrences, point to promising locations for the discovery of as yet undescribed minerals.

[1]  Joshua J. Golden,et al.  Earth’s “missing” minerals , 2015 .

[2]  R. Hazen,et al.  Statistical analysis of mineral diversity and distribution: Earth's mineralogy is unique , 2015 .

[3]  C. Henze,et al.  DISCOVERY AND VALIDATION OF Kepler-452b: A 1.6 R⨁ SUPER EARTH EXOPLANET IN THE HABITABLE ZONE OF A G2 STAR , 2015, 1507.06723.

[4]  R. Hazen,et al.  Mineral Species Frequency Distribution Conforms to a Large Number of Rare Events Model: Prediction of Earth’s Missing Minerals , 2015, Mathematical Geosciences.

[5]  Joshua J. Golden,et al.  MINERAL ECOLOGY: CHANCE AND NECESSITY IN THE MINERAL DIVERSITY OF TERRESTRIAL PLANETS , 2015 .

[6]  A. Fontana,et al.  The assembly of ‘normal’ galaxies at z ∼ 7 probed by ALMA , 2015, 1502.06634.

[7]  A. Christy Causes of anomalous mineralogical diversity in the Periodic Table , 2015, Mineralogical Magazine.

[8]  Justin R. Crepp,et al.  VALIDATION OF 12 SMALL KEPLER TRANSITING PLANETS IN THE HABITABLE ZONE , 2015, 1501.01101.

[9]  R. Hazen,et al.  Statistical analysis of mineral diversity and distribution , 2015 .

[10]  R. Hazen Data-driven abductive discovery in mineralogy , 2014 .

[11]  R. Lupu,et al.  Terrestrial aftermath of the Moon-forming impact , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  R. Hazen,et al.  Beryllium mineral evolution , 2014 .

[13]  E. Ford,et al.  An Earth-Sized Planet in the Habitable Zone of a Cool Star , 2014, Science.

[14]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[15]  D. Canfield Oxygen: A Four Billion Year History , 2014 .

[16]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[17]  R. Bowell Hydrogeochemistry of the Tsumeb Deposit: Implications for Arsenate Mineral Stability , 2014 .

[18]  A. Anbar,et al.  Astrobiological stoichiometry. , 2014, Astrobiology.

[19]  R. Hazen Paleomineralogy of the Hadean Eon: A preliminary species list , 2013, American Journal of Science.

[20]  R. Hazen,et al.  Clay mineral evolution , 2013 .

[21]  C. Unterborn,et al.  THE ROLE OF CARBON IN EXTRASOLAR PLANETARY GEODYNAMICS AND HABITABILITY , 2013, 1311.0024.

[22]  Joshua J. Golden,et al.  Rhenium variations in molybdenite (MoS2): Evidence for progressive subsurface oxidation , 2013 .

[23]  P. Nissen The carbon-to-oxygen ratio in stars with planets , 2013, 1303.1726.

[24]  Linda C. Kah,et al.  Carbon Mineralogy and Crystal Chemistry , 2013 .

[25]  Linda C. Kah,et al.  Carbon Mineral Evolution , 2013 .

[26]  Adrian P. Jones,et al.  Carbonate Melts and Carbonatites , 2012 .

[27]  G. Markl,et al.  On the origin of sellaite (MgF2)-rich deposits in Mg-poor environments , 2012 .

[28]  R. Hazen,et al.  Mineral-organic interfacial processes: potential roles in the origins of life. , 2012, Chemical Society reviews.

[29]  Joshua J. Golden,et al.  Mercury (Hg) mineral evolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere , 2012 .

[30]  F. Ransome The Geology and Ore Deposits of the Bisbee Quadrangle, Arizona , 2012 .

[31]  L. Horváth,et al.  The magmatic to hydrothermal evolution of the intrusive Mont Saint-Hilaire Complex: Insights into the late-stage evolution of peralkaline rocks , 2011 .

[32]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[33]  Dorian G. W. Smith,et al.  A census of mineral species in 2010 , 2010 .

[34]  N. Santos,et al.  CHEMICAL CLUES ON THE FORMATION OF PLANETARY SYSTEMS: C/O VERSUS Mg/Si FOR HARPS GTO SAMPLE , 2010, Proceedings of the International Astronomical Union.

[35]  David P. O'Brien,et al.  THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. I. IN SITU SIMULATIONS , 2010, 1004.0971.

[36]  D. Sverjensky,et al.  The Great Oxidation Event and Mineral Diversification , 2010 .

[37]  P. Dove The Rise of Skeletal Biominerals , 2010 .

[38]  Yinian Zhu,et al.  Groundwater in fractured crystalline rocks, the Clara mine, Black Forest (Germany) , 2009 .

[39]  L. Larsen,et al.  Petrology of the Paleocene Picrites and Flood Basalts on Disko and Nuussuaq, West Greenland , 2009 .

[40]  Gordon E. Brown,et al.  Microbially influenced formation of 2,724-million-year-old stromatolites , 2008 .

[41]  Hazen,et al.  Review Paper. Mineral evolution , 2008 .

[42]  C. Torney,et al.  MAGNESIUM‐RICH INTRALENSAR STRUCTURES IN SCHIZOCHROAL TRILOBITE EYES , 2007 .

[43]  H. Ehrlich Biomineralization , 2007, Calcified Tissue International.

[44]  R. Hazen Presidential Address to the Mineralogical Society of America, Salt Lake City, October 18, 2005: Mineral surfaces and the prebiotic selection and organization of biomolecules , 2006 .

[45]  Abigail C. Allwood,et al.  Stromatolite reef from the Early Archaean era of Australia , 2006, Nature.

[46]  P. Dobes,et al.  Ore-forming processes and mineral parageneses of the Jachymov ore district , 2003 .

[47]  F. Veselovský,et al.  Geology and hydrothermal vein system of the Jachymov (Joachimsthal) ore district , 2003 .

[48]  E. Jonsson,et al.  FLUID INCLUSIONS IN LATE-STAGE Pb–Mn–As–Sb MINERAL ASSEMBLAGES IN THE LÅNGBAN DEPOSIT, BERGSLAGEN, SWEDEN , 2002 .

[49]  S. Mann Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry , 2002 .

[50]  R. Harald Baayen,et al.  Word Frequency Distributions , 2001 .

[51]  J. Mckenzie,et al.  Bacterially induced dolomite precipitation in anoxic culture experiments , 2000 .

[52]  P. Moore LÅNGBAN: THE MINES, THEIR MINERALS, GEOLOGY, AND EXPLORERS. , 2000 .

[53]  A. Knoll,et al.  Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? , 1999, Annual review of earth and planetary sciences.

[54]  F. Wall,et al.  REE-Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: their mineralogy, paragenesis and evolution , 1998, Mineralogical Magazine.

[55]  D. Sumner Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa , 1997 .

[56]  A. Zaitsev,et al.  Kukharenkoite-(Ce), Ba 2 Ce(CO 3 ) 3 F, a new mineral from Kola Peninsula, Russia, and Quebec, Canada , 1997 .

[57]  A. A. Yaroshevsky,et al.  The Mineral Composition of the Earth’s Crust, Mantle, Meteorites, Moon, and Planets , 1994 .

[58]  J. F. Branthaver,et al.  Review of the stratigraphic distribution and diagenetic history of abelsonite , 1989 .

[59]  B. Runnegar The Evolution of Mineral Skeletons , 1989 .

[60]  R. E. Crick Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals , 1989, Springer US.

[61]  G. Eby,et al.  The petrology of the Mont Saint Hilaire complex, southern Quebec: An alkaline gabbro-peralkaline syenite association , 1986 .

[62]  S. Maske,et al.  Mineral deposits of Southern Africa , 1986 .

[63]  J. A. Speer Chapter 5. CRYSTAL CHEMISTRY and PHASE RELATIONS of ORTHORHOMBIC CARBONATES , 1983 .

[64]  Richard J. Reeder,et al.  Crystal chemistry of the rhombohedral carbonates , 1983 .

[65]  M. Walter,et al.  Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia , 1980, Nature.

[66]  J. Larimer,et al.  The role of carbon and oxygen in cosmic gases: some applications to the chemistry and mineralogy of enstatite chondrites , 1979 .

[67]  J. DwonNlr Abelsonite, nickel porphyrin' a new mineral from the .Green River Formation, Utah , 1978 .

[68]  I. D. Muir The Minerals of Franklin and Sterling Hill: C. Frondel, 1973. Wiley, Chichester, 94 pp., £4.60 , 1973 .

[69]  J. Jambor,et al.  Nature, distribution and content of zirconium and niobium in a silico-carbonatite sill at St-Michel, Montreal Island, Quebec , 1969 .

[70]  B. Mason Composition of the Earth , 1966, Nature.

[71]  S. Titley,et al.  Geology of the porphyry copper deposits : southwestern North America , 1966 .

[72]  A. Trotman‐Dickenson,et al.  ‘Comprehensive’ Inorganic Chemistry , 1958, Nature.

[73]  C. Palache The minerals of Franklin and Sterling Hill, Sussex County, New Jersey , 1935 .

[74]  R. Witherspoon MANUFACTURE OF CALCIUM CARBIDE , 1913 .