Solution structure of the RIM1alpha PDZ domain in complex with an ELKS1b C-terminal peptide.

[1]  T. Südhof,et al.  A Complete Genetic Analysis of Neuronal Rab3 Function , 2004, The Journal of Neuroscience.

[2]  Thomas C. Südhof,et al.  Multiple Roles for the Active Zone Protein RIM1α in Late Stages of Neurotransmitter Release , 2004, Neuron.

[3]  T. Südhof,et al.  The Presynaptic Active Zone Protein RIM1α Is Critical for Normal Learning and Memory , 2004, Neuron.

[4]  Y. Takai,et al.  Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release , 2004, The Journal of cell biology.

[5]  Thomas C. Südhof,et al.  Phosphorylation of RIM1α by PKA Triggers Presynaptic Long-Term Potentiation at Cerebellar Parallel Fiber Synapses , 2003, Cell.

[6]  David R Cooper,et al.  Molecular roots of degenerate specificity in syntenin's PDZ2 domain: reassessment of the PDZ recognition paradigm. , 2003, Structure.

[7]  W. Hendriks,et al.  PDZ domains – glue and guide , 2003, Molecular Biology Reports.

[8]  Mingjie Zhang,et al.  Organization of signaling complexes by PDZ-domain scaffold proteins. , 2003, Accounts of chemical research.

[9]  Seth G. N. Grant,et al.  PDZ Domain Proteins: Plug and Play! , 2003, Science's STKE.

[10]  Seong-Hwan Rho,et al.  Crystal Structure of GRIP1 PDZ6-Peptide Complex Reveals the Structural Basis for Class II PDZ Target Recognition and PDZ Domain-mediated Multimerization* , 2003, The Journal of Biological Chemistry.

[11]  Sachdev S Sidhu,et al.  Origins of PDZ Domain Ligand Specificity , 2003, The Journal of Biological Chemistry.

[12]  T. Südhof,et al.  Genomic definition of RIM proteins: evolutionary amplification of a family of synaptic regulatory proteins. , 2003, Genomics.

[13]  T. Südhof,et al.  A family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Christian Rosenmund,et al.  Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Thomas C. Südhof,et al.  RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone , 2002, Nature.

[16]  Thomas C. Südhof,et al.  RIM1α is required for presynaptic long-term potentiation , 2002, Nature.

[17]  I. Bezprozvanny,et al.  Classification of PDZ domains , 2001, FEBS letters.

[18]  B. Brannetti,et al.  Distinct Binding Specificity of the Multiple PDZ Domains of INADL, a Human Protein with Homology to INAD fromDrosophila melanogaster * , 2001, The Journal of Biological Chemistry.

[19]  Erik M. Jorgensen,et al.  A post-docking role for active zone protein Rim , 2001, Nature Neuroscience.

[20]  W. Lim,et al.  Mechanism and role of PDZ domains in signaling complex assembly. , 2001, Journal of cell science.

[21]  G. Schiavo,et al.  Direct Interaction of the Rab3 Effector RIM with Ca2+Channels, SNAP-25, and Synaptotagmin* , 2001, The Journal of Biological Chemistry.

[22]  Nils Brose,et al.  Functional Interaction of the Active Zone Proteins Munc13-1 and RIM1 in Synaptic Vesicle Priming , 2001, Neuron.

[23]  J. Baselga,et al.  The carboxy-terminal cysteine of the tetraspanin L6 antigen is required for its interaction with SITAC, a novel PDZ protein. , 2000, Molecular biology of the cell.

[24]  M. Teresa Pisabarro,et al.  Analysis of PDZ Domain-Ligand Interactions Using Carboxyl-terminal Phage Display* , 2000, The Journal of Biological Chemistry.

[25]  T. Südhof,et al.  The RIM/NIM Family of Neuronal C2 Domain Proteins , 2000, The Journal of Biological Chemistry.

[26]  C. Garner,et al.  Molecular determinants of presynaptic active zones , 2000, Current Opinion in Neurobiology.

[27]  Ad Bax,et al.  Prediction of Sterically Induced Alignment in a Dilute Liquid Crystalline Phase: Aid to Protein Structure Determination by NMR , 2000 .

[28]  E. Jorgensen,et al.  UNC-13 is required for synaptic vesicle fusion in C. elegans , 1999, Nature Neuroscience.

[29]  E. Jorgensen,et al.  One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction , 1999, Nature Neuroscience.

[30]  T. Südhof,et al.  Association of Neuronal Calcium Channels with Modular Adaptor Proteins* , 1999, The Journal of Biological Chemistry.

[31]  Thomas C. Südhof,et al.  Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles , 1999, Nature.

[32]  Mingjie Zhang,et al.  Solution structure of the extended neuronal nitric oxide synthase PDZ domain complexed with an associated peptide , 1999, Nature Structural Biology.

[33]  W. Lim,et al.  Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. , 1999, Science.

[34]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[35]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[36]  Axel T. Brünger,et al.  Crystal structure of the hCASK PDZ domain reveals the structural basis of class II PDZ domain target recognition , 1998, Nature Structural Biology.

[37]  E. Olson,et al.  Specific Interaction of the PDZ Domain Protein PICK1 with the COOH Terminus of Protein Kinase C-α* , 1997, The Journal of Biological Chemistry.

[38]  Thomas C. Südhof,et al.  Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion , 1997, Nature.

[39]  D. Bredt,et al.  PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences , 1997, Nature Biotechnology.

[40]  L. Cantley,et al.  Recognition of Unique Carboxyl-Terminal Motifs by Distinct PDZ Domains , 1997, Science.

[41]  R. Liddington,et al.  Crystal structure of a PDZ domain , 1996, Nature.

[42]  John H. Lewis,et al.  Crystal Structures of a Complexed and Peptide-Free Membrane Protein–Binding Domain: Molecular Basis of Peptide Recognition by PDZ , 1996, Cell.

[43]  Y. Jan,et al.  Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases , 1995, Nature.

[44]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[45]  P. Seeburg,et al.  Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. , 1995, Science.

[46]  L. Kay,et al.  Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques , 1994, Journal of biomolecular NMR.

[47]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[48]  L. Kay,et al.  Enhanced-Sensitivity Triple-Resonance Spectroscopy with Minimal H2O Saturation , 1994 .

[49]  L. Kay,et al.  Gradient-Enhanced Triple-Resonance Three-Dimensional NMR Experiments with Improved Sensitivity , 1994 .

[50]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[51]  L. Kay,et al.  A Gradient-Enhanced HCCH-TOCSY Experiment for Recording Side-Chain 1H and 13C Correlations in H2O Samples of Proteins , 1993 .

[52]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[53]  Josep Rizo,et al.  A conformational switch in the Piccolo C2A domain regulated by alternative splicing , 2004, Nature Structural &Molecular Biology.

[54]  Hongtao Yu,et al.  The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. , 2002, Molecular cell.

[55]  Jens Schneider-Mergener,et al.  Journal speciation , 1998, Nature Structural Biology.