Asymptotic normality of posterior distributions in high-dimensional linear models
暂无分享,去创建一个
[1] P. Bickel,et al. Some contributions to the asymptotic theory of Bayes solutions , 1969 .
[2] R. R. Bahadur. Some Limit Theorems in Statistics , 1987 .
[3] P. J. Huber. Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .
[4] R. Shibata. An optimal selection of regression variables , 1981 .
[5] D. Freedman,et al. Nonparametric Binary Regression: A Bayesian Approach , 1993 .
[6] Stephen Portnoy,et al. Asymptotic Behavior of the Empiric Distribution of M-Estimated Residuals from a Regression Model with Many Parameters , 1986 .
[7] V. Yohai,et al. ASYMPTOTIC BEHAVIOR OF M-ESTIMATORS FOR THE LINEAR MODEL , 1979 .
[8] Le Cam,et al. On some asymptotic properties of maximum likelihood estimates and related Bayes' estimates , 1953 .
[9] S. Portnoy. Asymptotic Behavior of $M$-Estimators of $p$ Regression Parameters when $p^2/n$ is Large. I. Consistency , 1984 .
[10] A. Wald. Note on the Consistency of the Maximum Likelihood Estimate , 1949 .
[11] R. Z. Khasʹminskiĭ,et al. Statistical estimation : asymptotic theory , 1981 .
[12] Richard A. Johnson. Asymptotic Expansions Associated with Posterior Distributions , 1970 .
[13] S. Portnoy. Asymptotic behavior of M-estimators of p regression parameters when p , 1985 .
[14] J. Ghosh,et al. On convergence of posterior distributions , 1995 .
[15] J. Ringland. Robust Multiple Comparisons , 1983 .