Clinically Meaningful Magnetic Resonance Endpoints Sensitive to Preataxic Spinocerebellar Ataxia Types 1 and 3

This study was undertaken to identify magnetic resonance (MR) metrics that are most sensitive to early changes in the brain in spinocerebellar ataxia type 1 (SCA1) and type 3 (SCA3) using an advanced multimodal MR imaging (MRI) protocol in the multisite trial setting.

[1]  A. Durr,et al.  Paving the Way Toward Meaningful Trials in Ataxias: An Ataxia Global Initiative Perspective , 2022, Movement disorders : official journal of the Movement Disorder Society.

[2]  Young Woo Park,et al.  Plug‐and‐play advanced magnetic resonance spectroscopy , 2022, Magnetic resonance in medicine.

[3]  Y. Guan,et al.  Impaired Oligodendrocyte Maturation Is an Early Feature in SCA3 Disease Pathogenesis , 2021, The Journal of Neuroscience.

[4]  E. Visani,et al.  Spinocerebellar Ataxia Type 1: One-Year Longitudinal Study to Identify Clinical and MRI Measures of Disease Progression in Patients and Presymptomatic Carriers , 2021, The Cerebellum.

[5]  J. Diedrichsen,et al.  Regional Brain and Spinal Cord Volume Loss in Spinocerebellar Ataxia Type 3 , 2021, Movement disorders : official journal of the Movement Disorder Society.

[6]  T. Klockgether,et al.  New Model for Estimation of the Age at Onset in Spinocerebellar Ataxia Type 3 , 2021, Neurology.

[7]  F. Klawonn,et al.  Replicability, Repeatability, and Long-term Reproducibility of Cerebellar Morphometry , 2020, The Cerebellum.

[8]  F. Cendes,et al.  A 5‐Year Longitudinal Clinical and Magnetic Resonance Imaging Study in Spinocerebellar Ataxia Type 3 , 2020, Movement disorders : official journal of the Movement Disorder Society.

[9]  G. Öz,et al.  MR imaging and spectroscopy in degenerative ataxias: toward multimodal, multisite, multistage monitoring of neurodegeneration. , 2020, Current opinion in neurology.

[10]  Young Woo Park,et al.  Assessment of Cerebral and Cerebellar White Matter Microstructure in Spinocerebellar Ataxias 1, 2, 3, and 6 Using Diffusion MRI , 2020, Frontiers in Neurology.

[11]  Bennett A Landman,et al.  Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps , 2020, bioRxiv.

[12]  Jon-Fredrik Nielsen,et al.  Across‐vendor standardization of semi‐LASER for single‐voxel MRS at 3T , 2019, NMR in biomedicine.

[13]  Richard B. Ivry,et al.  The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper , 2019, The Cerebellum.

[14]  Anke Henning,et al.  Methodological consensus on clinical proton MRS of the brain: Review and recommendations , 2019, Magnetic resonance in medicine.

[15]  Daniel Rueckert,et al.  Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project , 2019, NeuroImage.

[16]  Christophe Lenglet,et al.  AutoVOI: real‐time automatic prescription of volume‐of‐interest for single voxel spectroscopy , 2018, Magnetic resonance in medicine.

[17]  H. Paulson,et al.  Spinocerebellar ataxias: prospects and challenges for therapy development , 2018, Nature Reviews Neurology.

[18]  F. Cendes,et al.  Structural signature of SCA3: From presymptomatic to late disease stages , 2018, Annals of neurology.

[19]  A. Martinez,et al.  Twenty-five years since the identification of the first SCA gene: history, clinical features and perspectives for SCA1 , 2018, Arquivos de Neuro-Psiquiatria.

[20]  Lynn E Eberly,et al.  Neurochemical abnormalities in premanifest and early spinocerebellar ataxias , 2018, Annals of neurology.

[21]  Xavier Guell,et al.  The cerebellar cognitive affective/Schmahmann syndrome scale , 2017, Brain : a journal of neurology.

[22]  Y. Guan,et al.  Comparison of spinocerebellar ataxia type 3 mouse models identifies early gain-of-function, cell-autonomous transcriptional changes in oligodendrocytes , 2017, Human molecular genetics.

[23]  M. Mallar Chakravarty,et al.  CERES: A new cerebellum lobule segmentation method , 2017, NeuroImage.

[24]  Michael N. Smolka,et al.  Quality Control of Structural MRI Images Applied Using FreeSurfer—A Hands-On Workflow to Rate Motion Artifacts , 2016, Front. Neurosci..

[25]  Í. Lopes-Cendes,et al.  Dystonia in Machado-Joseph disease: Clinical profile, therapy and anatomical basis. , 2015, Parkinsonism & related disorders.

[26]  T. Klockgether,et al.  The preclinical stage of spinocerebellar ataxias , 2015, Neurology.

[27]  Norbert Schuff,et al.  Bayesian segmentation of brainstem structures in MRI , 2015, NeuroImage.

[28]  Romain Valabregue,et al.  Two‐site reproducibility of cerebellar and brainstem neurochemical profiles with short‐echo, single‐voxel MRS at 3T , 2015, Magnetic resonance in medicine.

[29]  J. Bower,et al.  Consensus Paper: The Role of the Cerebellum in Perceptual Processes , 2014, The Cerebellum.

[30]  D. Timmann,et al.  Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6 , 2014, Journal of Medical Genetics.

[31]  L. Eberly,et al.  Non‐invasive detection of neurochemical changes prior to overt pathology in a mouse model of spinocerebellar ataxia type 1 , 2013, Journal of neurochemistry.

[32]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[33]  Jorge Jovicich,et al.  Reproducibility and biases in high field brain diffusion MRI: An evaluation of acquisition and analysis variables. , 2013, Magnetic resonance imaging.

[34]  Alexandra Durr,et al.  Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data , 2013, The Lancet Neurology.

[35]  Till-Karsten Hauser,et al.  Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. , 2013, Brain : a journal of neurology.

[36]  R. Fimmers,et al.  Inventory of Non-Ataxia Signs (INAS): Validation of a New Clinical Assessment Instrument , 2013, The Cerebellum.

[37]  Kevin A. Archie,et al.  DicomBrowser: Software for Viewing and Modifying DICOM Metadata , 2012, Journal of Digital Imaging.

[38]  D. Marcus,et al.  Obscuring Surface Anatomy in Volumetric Imaging Data , 2012, Neuroinformatics.

[39]  E. Ben-Jacob,et al.  Loss of Intrinsic Organization of Cerebellar Networks in Spinocerebellar Ataxia Type 1: Correlates with Disease Severity and Duration , 2011, The Cerebellum.

[40]  Peter Bauer,et al.  Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6 , 2010, NeuroImage.

[41]  M. Ruberg,et al.  Composite cerebellar functional severity score: validation of a quantitative score of cerebellar impairment. , 2008, Brain : a journal of neurology.

[42]  Lippincott Williams Wilkins,et al.  Scale for the assessment and rating of ataxia: Development of a new clinical scale , 2006, Neurology.

[43]  Anders M. Dale,et al.  Sequence-independent segmentation of magnetic resonance images , 2004, NeuroImage.

[44]  Thorsten Schmidt,et al.  Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis , 2004, The Lancet Neurology.

[45]  John Russell,et al.  Dysmyelination Revealed through MRI as Increased Radial (but Unchanged Axial) Diffusion of Water , 2002, NeuroImage.

[46]  R. Spitzer,et al.  The PHQ-9: validity of a brief depression severity measure. , 2001, Journal of general internal medicine.

[47]  Ren-Shyan Liu,et al.  Positron emission tomography in asymptomatic gene carriers of Machado-Joseph disease , 1998, Journal of neurology, neurosurgery, and psychiatry.

[48]  S. Provencher Estimation of metabolite concentrations from localized in vivo proton NMR spectra , 1993, Magnetic resonance in medicine.

[49]  A. Kasuya EuroQol--a new facility for the measurement of health-related quality of life. , 1990, Health policy.