A New Fictitious Domain Approach Inspired by the Extended Finite Element Method

The purpose of this paper is to present a new fictitious domain approach inspired by the extended finite element method introduced by Moes, Dolbow, and Belytschko in [Internat. J. Numer. Methods Engrg., 46 (1999), pp. 131-150]. An optimal method is obtained thanks to an additional stabilization technique. Some a priori estimates are established and numerical experiments illustrate different aspects of the method. The presentation is made on a simple Poisson problem with mixed Neumann and Dirichlet boundary conditions. The extension to other problems or boundary conditions is quite straightforward.

[1]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[2]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[3]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[4]  R. Glowinski,et al.  Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .

[5]  Juhani Pitkäranta,et al.  Local stability conditions for the Babuška method of Lagrange multipliers , 1980 .

[6]  Patrick Laborde,et al.  Crack tip enrichment in the XFEM method using a cut-off function , 2008 .

[7]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[8]  Helio J. C. Barbosa,et al.  Boundary Lagrange multipliers in finite element methods: Error analysis in natural norms , 1992 .

[9]  Jean-François Remacle,et al.  Imposing Dirichlet boundary conditions in the eXtended Finite Element Method , 2011 .

[10]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[11]  Patrick Hild,et al.  A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics , 2010, Numerische Mathematik.

[12]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[13]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[14]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[15]  Peter Hansbo,et al.  A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes , 2005, Numerische Mathematik.

[16]  Helio J. C. Barbosa,et al.  The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .

[17]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[18]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[19]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[20]  Patrick Laborde,et al.  Crack tip enrichment in the XFEM using a cutoff function , 2008 .

[21]  Ted Belytschko,et al.  An extended finite element method with higher-order elements for curved cracks , 2003 .

[22]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[23]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[24]  Anders Klarbring,et al.  Fictitious domain/mixed finite element approach for a class of optimal shape design problems , 1995 .

[25]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .