A New Fictitious Domain Approach Inspired by the Extended Finite Element Method
暂无分享,去创建一个
[1] T. Belytschko,et al. Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .
[2] Ted Belytschko,et al. Modelling crack growth by level sets in the extended finite element method , 2001 .
[3] T. Belytschko,et al. MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .
[4] R. Glowinski,et al. Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .
[5] Juhani Pitkäranta,et al. Local stability conditions for the Babuška method of Lagrange multipliers , 1980 .
[6] Patrick Laborde,et al. Crack tip enrichment in the XFEM method using a cut-off function , 2008 .
[7] Michel Salaün,et al. High‐order extended finite element method for cracked domains , 2005 .
[8] Helio J. C. Barbosa,et al. Boundary Lagrange multipliers in finite element methods: Error analysis in natural norms , 1992 .
[9] Jean-François Remacle,et al. Imposing Dirichlet boundary conditions in the eXtended Finite Element Method , 2011 .
[10] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[11] Patrick Hild,et al. A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics , 2010, Numerische Mathematik.
[12] T. Belytschko,et al. Extended finite element method for three-dimensional crack modelling , 2000 .
[13] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[14] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .
[15] Peter Hansbo,et al. A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes , 2005, Numerische Mathematik.
[16] Helio J. C. Barbosa,et al. The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .
[17] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[18] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[19] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[20] Patrick Laborde,et al. Crack tip enrichment in the XFEM using a cutoff function , 2008 .
[21] Ted Belytschko,et al. An extended finite element method with higher-order elements for curved cracks , 2003 .
[22] Thomas J. R. Hughes,et al. The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .
[23] Rolf Stenberg,et al. On some techniques for approximating boundary conditions in the finite element method , 1995 .
[24] Anders Klarbring,et al. Fictitious domain/mixed finite element approach for a class of optimal shape design problems , 1995 .
[25] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .