Information fusion in remote sensing

Abstract A short review of data fusion in remote sensing with emphasis on statistically based data fusion methods is given. The introductory part defines data fusion and image registration, and provides a historical background and some general references. Multivariate data are the necessary basis for any data fusion algorithm. The possible levels of data fusion and the frequent occurrence of various types of multivariate data in remote sensing are discussed. Finally, the paper presents a number of statistically based data fusion methods and discusses data fusion in the Bayesian framework.

[1]  Charles Elachi,et al.  Spaceborne Radar Remote Sensing: Applications and Techniques , 1987 .

[2]  F. Ulaby,et al.  Radar polarimetry for geoscience applications , 1990 .

[3]  L. Janssen,et al.  Implementation of temporal relationships in knowledge based classification of satellite images. , 1991 .

[4]  Steven E. Franklin,et al.  Ancillary data input to satellite remote sensing of complex terrain phenomena , 1989 .

[5]  D.A. Landgrebe,et al.  Classification with spatio-temporal interpixel class dependency contexts , 1992, IEEE Trans. Geosci. Remote. Sens..

[6]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[7]  Malcolm C. Harrison,et al.  An analysis of four uncertainty calculi , 1988, IEEE Trans. Syst. Man Cybern..

[8]  Pramod K. Varshney,et al.  Distributed Detection and Data Fusion , 1996 .

[9]  Rama Chellappa,et al.  Segmentation of polarimetric synthetic aperture radar data , 1992, IEEE Trans. Image Process..

[10]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[11]  David A. Landgrebe,et al.  A means for utilizing ancillary information in multispectral classification. [of remotely sensed data , 1982 .

[12]  Tong Lee,et al.  Probabilistic and Evidential Approaches for Multisource Data Analysis , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[13]  D. Leckie Synergism of synthetic aperture radar and visible/infrared data for forest type discrimination. , 1990 .

[14]  Anil K. Jain,et al.  Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images , 1994, IEEE Trans. Geosci. Remote. Sens..

[15]  T Poggio,et al.  Parallel integration of vision modules. , 1988, Science.

[16]  J. Villasenor,et al.  On the use of multi-frequency and polarimetric radar backscatter features for classification of agricultural crops , 1994 .

[17]  Mongi A. Abidi,et al.  Data fusion in robotics and machine intelligence , 1992 .

[18]  Lawrence A. Klein,et al.  Sensor and Data Fusion Concepts and Applications , 1993 .

[19]  King-Sun Fu,et al.  Information processing of remotely sensed agricultural data , 1969 .

[20]  Olivier D. Faugeras,et al.  Building, Registrating, and Fusing Noisy Visual Maps , 1988, Int. J. Robotics Res..

[21]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[22]  P. H. Swain,et al.  Bayesian classification in a time-varying environment , 1978 .

[23]  Richard T. Antony,et al.  Principles of Data Fusion Automation , 1995 .

[24]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[25]  K. Feigl,et al.  Radar interferometric mapping of deformation in the year after the Landers earthquake , 1994, Nature.

[26]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[28]  John M. Richardson,et al.  Fusion of Multisensor Data , 1988, Int. J. Robotics Res..

[29]  James Llinas,et al.  Multisensor Data Fusion , 1990 .