Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?

In this paper, we forecast energy market volatility using both univariate and multivariate GARCH-class models. First, we forecast volatilities of individual assets and find that multivariate models display better performance than univariate models. Second, we forecast crack spread volatility and contrast the performance of multivariate models for two underlyings, with the alternative of univariate ones for crack spreads directly. Our evidence shows that univariate models allowing for asymmetric effects display the greatest accuracy. We also discuss the hedging strategy based on multivariate models and its implications for market participants.

[1]  Matteo Manera,et al.  Modelling Dynamic Conditional Correlations in Wti Oil Forward and Futures Returns , 2004 .

[2]  Pierre Giot,et al.  Market risk in commodity markets: a VaR approach , 2003 .

[3]  M. McAleer,et al.  Modeling Conditional Correlations for Risk Diversification in Crude Oil Markets , 2009 .

[4]  David A. Menachof,et al.  Hedging against bunker price fluctuations using petroleum futures contracts: constant versus time-varying hedge ratios , 2004 .

[5]  Apostolos Serletis,et al.  Oil price uncertainty in Canada , 2009 .

[6]  Jui-Cheng Hung,et al.  Estimation of value-at-risk for energy commodities via fat-tailed GARCH models , 2008 .

[7]  James D. Hamilton Oil and the Macroeconomy since World War II , 1983, Journal of Political Economy.

[8]  Michael McAleer,et al.  Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets , 2010 .

[9]  R. Engle,et al.  A Permanent and Transitory Component Model of Stock Return Volatility , 1993 .

[10]  Ho-Chyuan Chen,et al.  On the application of the dynamic conditional correlation model in estimating optimal time-varying hedge ratios , 2007 .

[11]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[12]  chiao-yi chang,et al.  Futures hedging effectiveness under the segmentation of bear/bull energy markets , 2010 .

[13]  Seong-Min Yoon,et al.  Forecasting volatility of crude oil markets , 2009 .

[14]  Michael McAleer,et al.  ASYMPTOTIC THEORY FOR A VECTOR ARMA-GARCH MODEL , 2003, Econometric Theory.

[15]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[16]  Amir H. Alizadeh,et al.  A Markov regime switching approach for hedging energy commodities , 2008 .

[17]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[18]  Siem Jan Koopman,et al.  Forecasting Daily Variability of the S&P 100 Stock Index Using Historical, Realised and Implied Volatility Measurements , 2005 .

[19]  Chin Wen Cheong,et al.  Modeling and forecasting crude oil markets using ARCH-type models , 2009 .

[20]  Robert J. Myers,et al.  Bivariate garch estimation of the optimal commodity futures Hedge , 1991 .

[21]  Michael McAleer,et al.  Crude Oil Hedging Strategies Using Dynamic Multivariate GARCH , 2010 .

[22]  Chaker Aloui,et al.  Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models , 2010 .

[23]  Anil K. Bera,et al.  Efficient tests for normality, homoscedasticity and serial independence of regression residuals , 1980 .

[24]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[25]  P. Phillips,et al.  Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? , 1992 .

[26]  Petroleum spreads and the term structure of futures prices , 2006 .

[27]  Seema Narayan,et al.  Modelling oil price volatility , 2007 .

[28]  Perry Sadorsky,et al.  Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies , 2012 .

[29]  S. Borenstein,et al.  Do Gasoline Prices Respond Asymmetrically to Crude Oil Price Changes , 1997 .

[30]  Leland L. Johnson,et al.  The Theory of Hedging and Speculation in Commodity Futures , 1960 .

[31]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[32]  S. Borenstein,et al.  Sticky Prices, Inventories, and Market Power in Wholesale Gasoline Markets , 1996 .

[33]  Bruce E. Hansen,et al.  Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator , 1994, Econometric Theory.

[34]  R. Engle,et al.  Multivariate Simultaneous Generalized ARCH , 1995, Econometric Theory.

[35]  P. Phillips Testing for a Unit Root in Time Series Regression , 1988 .

[36]  F. Diebold,et al.  Forecast Evaluation and Combination , 1996 .

[37]  H. Mohammadi,et al.  International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models , 2010 .

[38]  Yu Wei,et al.  Auto-correlated behavior of WTI crude oil volatilities: A multiscale perspective , 2010 .

[39]  J. David Cabedo,et al.  Estimating oil price ‘Value at Risk’ using the historical simulation approach , 2003 .

[40]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[41]  Paolo Agnolucci,et al.  Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models , 2009 .

[42]  Wai Mun Fong,et al.  A Markov switching model of the conditional volatility of crude oil futures prices , 2002 .

[43]  H. White,et al.  A Reality Check for Data Snooping , 2000 .

[44]  Yi-Ming Wei,et al.  Estimating ‘Value at Risk’ of crude oil price and its spillover effect using the GED-GARCH approach , 2008 .

[45]  Yu Wei,et al.  Forecasting crude oil market volatility: Further evidence using GARCH-class models , 2010 .

[46]  Matthew T. Holt,et al.  Crack spread hedging: accounting for time-varying volatility spillovers in the energy futures markets , 2002 .

[47]  Jose A. Lopez Evaluating the Predictive Accuracy of Volatility Models , 2001 .

[48]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[49]  M. McAleer,et al.  Volatility Spillovers between Returns on Crude Oil Futures and Oil Company Stocks , 2009 .

[50]  Marc S. Paolella,et al.  A New Approach to Markov-Switching GARCH Models , 2004 .

[51]  K. Kroner,et al.  Modeling Asymmetric Comovements of Asset Returns , 1998 .

[52]  Pedro Santa-Clara,et al.  Flexible Multivariate GARCH Modeling with an Application to International Stock Markets , 2002 .

[53]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[54]  P. Hansen A Test for Superior Predictive Ability , 2005 .

[55]  B. Ewing,et al.  Volatility transmission in the oil and natural gas markets , 2002 .

[56]  Ai Jun Hou,et al.  A Nonparametric GARCH Model of Crude Oil Price Return Volatility , 2012 .

[57]  Michael McAleer,et al.  An econometric analysis of asymmetric volatility : Theory and application to patents , 2007 .

[58]  W. Fuller,et al.  Distribution of the Estimators for Autoregressive Time Series with a Unit Root , 1979 .

[59]  Marc S. Paolella,et al.  Mixed Normal Conditional Heteroskedasticity , 2004 .

[60]  T. Brailsford,et al.  An evaluation of volatility forecasting techniques , 1996 .

[61]  R. Engle Dynamic Conditional Correlation , 2002 .

[62]  Perry Sadorsky,et al.  Modeling and forecasting petroleum futures volatility , 2006 .

[63]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[64]  Kanwalroop Kathy Dhanda,et al.  Chaos in oil prices? Evidence from futures markets , 2001 .

[65]  Minh-Vuong Vo,et al.  Regime-switching stochastic volatility: Evidence from the crude oil market , 2009 .

[66]  W. Newey,et al.  Automatic Lag Selection in Covariance Matrix Estimation , 1994 .

[67]  N. Shephard Statistical aspects of ARCH and stochastic volatility , 1996 .

[68]  M. McAleer,et al.  Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models , 2009 .

[69]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[70]  N. Nomikos,et al.  Forecasting petroleum futures markets volatility: The role of regimes and market conditions , 2011 .