A Nonperturbative Treatment of Two-dimensional Quantum Gravity

We propose a nonperturbative definition of two-dimensional quantum gravity, based on a double scaling limit of the random matrix model. We develop an operator formalism for utilizing the method of orthogonal polynomials that allows us to solve the matrix models to all orders in the genus expansion. Using this formalism we derive an exact differential equation for the partition function of two-dimensional gravity as a function of the string coupling constant that governs the genus expansion of two-dimensional surfaces, and discuss its properties and consequences. We construct and discuss the correlation functions of an infinite set of pointlike and loop operators to all orders in the genus expansion.

[1]  J. Jurkiewicz,et al.  A Numerical Study of Discrete Euclidean Polyakov Surfaces , 1986 .

[2]  S. Shenker,et al.  Microscopic and macroscopic loops in non-perturbative two dimensional gravity , 1990 .

[3]  J. Fröhlich,et al.  The appearance of critical dimensions in regulated string theories , 1986 .

[4]  Alexander M. Polyakov,et al.  Fractal Structure of 2D Quantum Gravity , 1988 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  É. Brézin,et al.  The Ising model coupled to 2D gravity. A nonperturbative analysis , 1990 .

[7]  F. David Randomly triangulated surfaces in - 2 dimensions , 1985 .

[8]  D. Gross,et al.  String perturbation theory diverges. , 1988, Physical review letters.

[9]  Michael R. Douglas,et al.  STRINGS IN LESS THAN ONE DIMENSION , 1990 .

[10]  D. Bessis A new method in the combinatorics of the topological expansion , 1979 .

[11]  A. Migdal,et al.  Analytical and numerical study of a model of dynamically triangulated random surfaces , 1986 .

[12]  V. Kazakov Bilocal Regularization of Models of Random Surfaces , 1985 .

[13]  P. Ginsparg,et al.  The Ising model, the Yang-Lee edge singularity, and 2D quantum gravity , 1990 .

[14]  Jürg Fröhlich,et al.  Diseases of triangulated random surface models, and possible cures , 1985 .

[15]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .

[16]  F. David,et al.  Microcanonical simulations of randomly triangulated planar random surfaces , 1986 .

[17]  J. Distler,et al.  Conformal Field Theory and 2D Quantum Gravity , 1989 .

[18]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[19]  J. Cardy,et al.  Conformal invariance and the Yang-Lee edge singularity in two dimensions. , 1985, Physical review letters.

[20]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[21]  V. Kazakov,et al.  Universality, critical exponents and mass gap in the D-->0 limit of the model of dynamically triangulated random surfaces , 1987 .

[22]  Edward Witten,et al.  Topological gravity in two dimensions , 1988 .

[23]  D. Gross,et al.  Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.

[24]  F. David PLANAR DIAGRAMS, TWO-DIMENSIONAL LATTICE GRAVITY AND SURFACE MODELS , 1985 .

[25]  Vladimir Kazakov,et al.  Critical properties of randomly triangulated planar random surfaces , 1985 .

[26]  Edouard Brézin,et al.  Exactly Solvable Field Theories of Closed Strings , 1990 .

[27]  Exactly solvable Potts models, bond- and tree-like percolation on dynamical (random) planar lattice , 1988 .

[28]  Gross,et al.  Nonperturbative solution of the Ising model on a random surface. , 1990, Physical review letters.

[29]  A. Migdal Loop equations and 1N expansion , 1983 .

[30]  C. Itzykson,et al.  The planar approximation. II , 1980 .

[31]  M. L. Mehta,et al.  A method of integration over matrix variables , 1981 .

[32]  Michael R. Douglas Strings in less than one dimension and the generalized KdV hierarchies , 1990 .

[33]  F. David CONFORMAL FIELD THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE , 1988 .

[34]  M. Mehta,et al.  Random surfaces of arbitrary genus: Exact results for D=0 and −2 dimensions , 1987 .