A Revision of the Rhinolophus hipposideros group (Chiroptera: Rhinolophidae) with Definition of an Additional Species from the Middle East

Initially, the Rhinolophus hipposideros group was defined by two morphological traits, the structure of the nose-leaf and the shape of basioccipital bone of the skull. Originally, it consisted of two species, R. hipposideros and R. midas, whereas currently it is considered to contain a single species, R. hipposideros, under whose rank both original species have been joined. The interpretation of geographic variability within the group has traditionally been based on variation in body and skull size, nose-leaf shape, and several selected skull and tooth characters. This approach resulted in delimitations of up to seven subspecies, mostly in the Mediterranean area, a conception introduced more than a hundred years ago and accepted by many authors till today. We investigated the phylogenetic relationships among populations of R. hipposideros with the help of molecular genetic, morphological, and acoustic examinations. Our analysis uncovered the existence of an unexpected diversity within the R. hipposideros group, challenging its current phylogenetic and taxonomic arrangements. The molecular genetic analysis of almost 100 samples and morphological examinations of about 300 specimens showed two main, geographically exclusive, phylogenetic lineages within the group, well delimited by molecular characteristics and possessing two distinct morphotypes and two distinct echotypes. These two lineages are isolated deep enough to be considered separate species. One of them, R. hipposideros s.str., is widespread over the south-western Eurasia and north-western and north-eastern Africa, and the other, R. midas, is distributed in a small range around the Strait of Hormuz and Gulf of Oman. The extensive range of R. hipposideros s.str. is inhabited at least by two subspecies, separated mainly by the genetic characters, whereas the morphological and echolocation traits do not distinguish the populations sufficiently. The western R. h. hipposideros occurs in the Maghreb and Europe west of the Dnieper River, Bosporus, and the Strait of Karpathos, and the eastern R. h. minimus lives east of this boundary, including the populations of Crimea, Caucasus, the Middle East, and north-eastern Africa (Sudan to Djibouti). The two subspecies also differ in karyotype, with 2n = 58 in R. h. minimus and 2n = 54–56 in R. h. hipposideros. The taxonomic position of the easternmost populations of R. hipposideros s.str. (West Turkestan, Afghanistan, Kashmir) remains unresolved and has to be investigated more elaborately and using a more extensive sample set.

[1]  S. Aulagnier,et al.  First record of the lesser horseshoe bat, Rhinolophus hipposideros (Borkhausen, 1797), in Libya and potential distribution in North Africa , 2022, Mammalia.

[2]  P. Benda,et al.  Nomenclatural notes on the lesser horseshoe bat, Rhinolophus hipposideros (Mammalia: Chiroptera) , 2022, Journal of the National Museum (Prague), Natural History Series.

[3]  Sudhir Kumar,et al.  MEGA11: Molecular Evolutionary Genetics Analysis Version 11 , 2021, Molecular biology and evolution.

[4]  V. Sánchez‐Cordero,et al.  Body Size Variation in Italian Lesser Horseshoe Bats Rhinolophus hipposideros over 147 Years: Exploring the Effects of Climate Change, Urbanization and Geography , 2020, Biology.

[5]  M. Sharifi,et al.  Echolocation call frequency and mitochondrial control region variation in the closely related bat species of the genus Rhinolophus (Chiroptera: Rhinolophidae) occurring in Iran: implications for taxonomy and intraspecific phylogeny , 2019, Mammal Research.

[6]  A. Vella,et al.  Acoustic characterization of bats from Malta: setting a baseline for monitoring and conservation of bat populations , 2019 .

[7]  Bruce D. Patterson,et al.  Molecular phylogenetics of the African horseshoe bats (Chiroptera: Rhinolophidae): expanded geographic and taxonomic sampling of the Afrotropics , 2019, BMC Evolutionary Biology.

[8]  A. Monadjem,et al.  Integrative taxonomy resolves three new cryptic species of small southern African horseshoe bats (Rhinolophus) , 2018 .

[9]  G. M. Allen A Checklist of African Mammals , 2018 .

[10]  G. Miller Catalogue of the mammals of Western Europe : (Europe exclusive of Russia) in the collection of the British museum , 2017 .

[11]  M. Holderied,et al.  Echolocation call description of 15 species of Middle-Eastern desert dwelling insectivorous bats , 2017 .

[12]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[13]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[14]  S. Wray,et al.  Sex-Specific Habitat Preferences of Foraging and Commuting Lesser Horseshoe Bats Rhinolophus hipposideros (Borkhausen, 1797) in Lowland England , 2016, Acta Chiropterologica.

[15]  T. Herbert,et al.  Late Miocene global cooling and the rise of modern ecosystems , 2016 .

[16]  E. Teeling,et al.  Wing Membrane Biopsies for Bat Cytogenetics: Finding of 2n = 54 in Irish Rhinolophushipposideros (Rhinolophidae, Chiroptera, Mammalia) Supports Two Geographically Separated Chromosomal Variants in Europe , 2016, Cytogenetic and Genome Research.

[17]  Olga Chernomor,et al.  Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices , 2016, Systematic biology.

[18]  Arndt von Haeseler,et al.  W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis , 2016, Nucleic Acids Res..

[19]  S. Puechmaille,et al.  Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: Lessons from horseshoe bats (Rhinolophidae: Chiroptera). , 2016, Molecular phylogenetics and evolution.

[20]  S. Puechmaille,et al.  How and Why Overcome the Impediments to Resolution: Lessons from rhinolophid and hipposiderid Bats , 2014, Molecular biology and evolution.

[21]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[22]  C. Fonseca,et al.  Prey Selection by Rhinolophus hipposideros (Chiroptera, Rhinolophidae) in a Modified Forest in Southwest Europe , 2014 .

[23]  A. Arslan,et al.  Karyotypes of the mammals of Turkey and neighbouring regions: a review , 2014, Folia Zoologica.

[24]  S. Puechmaille,et al.  Phylogeography and postglacial recolonization of Europe by Rhinolophus hipposideros: evidence from multiple genetic markers , 2013, Molecular ecology.

[25]  A. Karataş,et al.  Phylogeographic analysis of Anatolian bats highlights the importance of the region for preserving the Chiropteran mitochondrial genetic diversity in the Western Palaearctic , 2013, Conservation Genetics.

[26]  K. Heller,et al.  Evidence for Two Karyotypic Variants of the Lesser Horseshoe Bat (Rhinolophus hipposideros, Chiroptera, Mammalia) in Central Europe , 2013, Cytogenetic and Genome Research.

[27]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[28]  S. Puechmaille,et al.  Systematics of the Hipposideros turpis complex and a description of a new subspecies from Vietnam , 2012 .

[29]  P. Benda,et al.  Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 10. Bat fauna of Iran , 2012 .

[30]  M. Uhrin,et al.  Body size as an important factor determining trophic niche partitioning in three syntopic rhinolophid bat species , 2012, Biologia.

[31]  S. Puechmaille,et al.  The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat , 2011, Nature communications.

[32]  C. Ibáñez,et al.  Multilocus phylogeny and species delimitation within the Natterer's bat species complex in the Western Palearctic. , 2011, Molecular phylogenetics and evolution.

[33]  W. H. Burt,et al.  Checklist of Palaearctic and Indian Mammals 1758 to 1946 , 2011 .

[34]  O. Gascuel,et al.  Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes , 2011, Systematic biology.

[35]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[36]  K. Andersen 3. On some Bats of the Genus Rhinolophus, with Remarks on their Mutual Affinities, and Descriptions of Twenty‐six new Forms , 2010 .

[37]  A. Leaché,et al.  Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus) , 2010, Proceedings of the Royal Society B: Biological Sciences.

[38]  B. Rannala,et al.  Bayesian species delimitation using multilocus sequence data , 2010, Proceedings of the National Academy of Sciences.

[39]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[40]  P. Gibbard,et al.  Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma , 2010 .

[41]  Jean‐François Flot seqphase: a web tool for interconverting phase input/output files and fasta sequence alignments , 2010, Molecular ecology resources.

[42]  D. Jacobs,et al.  Molecular phylogenetics and historical biogeography of Rhinolophus bats. , 2010, Molecular phylogenetics and evolution.

[43]  P. Benda,et al.  Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 8. Bats of Jordan: fauna, ecology, echolocation, ectoparasites. , 2010 .

[44]  C. Ibáñez,et al.  The Straits of Gibraltar: barrier or bridge to Ibero-Moroccan bat diversity? , 2009 .

[45]  P. Kůs Molekulárně genetická studie vrápenců východního Středomoří (Chiroptera: Rhinolophidae: Rhinolophus) , 2008 .

[46]  Tanja Gernhard,et al.  The conditioned reconstructed process. , 2008, Journal of theoretical biology.

[47]  Eleni Papadatou,et al.  Identification of bat species in Greece from their echolocation calls , 2008 .

[48]  Danilo Russo,et al.  Divergent echolocation call frequencies in insular rhinolophids (Chiroptera): a case of character displacement? , 2007 .

[49]  Stephen J. Rossiter,et al.  PHYLOGENETICS OF SMALL HORSESHOE BATS FROM EAST ASIA BASED ON MITOCHONDRIAL DNA SEQUENCE VARIATION , 2006 .

[50]  C. Ibáñez,et al.  The Iberian contribution to cryptic diversity in European bats , 2006 .

[51]  R. Baker,et al.  SPECIATION IN MAMMALS AND THE GENETIC SPECIES CONCEPT , 2006, Journal of mammalogy.

[52]  M. Obrist,et al.  Variability in echolocation call design of 26 Swiss bat species: consequences, limits and options for automated field identification with a synergetic pattern recognition approach , 2004 .

[53]  J. Zima Karyotypic Variation in Mammals of the Balkan Peninsula , 2004 .

[54]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[55]  Ziheng Yang,et al.  Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. , 2003, Genetics.

[56]  Zhou Jiang,et al.  Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae , 2003 .

[57]  G. Csorba,et al.  Horseshoe Bats of the World (Chiroptera : rhinolophidae) , 2003 .

[58]  I. Horáček,et al.  Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 3. Review of bat distribution in Bulgaria , 2003 .

[59]  Gareth Jones,et al.  Identification of twenty‐two bat species (Mammalia: Chiroptera) from Italy by analysis of time‐expanded recordings of echolocation calls , 2002 .

[60]  M. C. Tracy,et al.  Is Bergmann’s Rule Valid for Mammals? , 2000, The American Naturalist.

[61]  S. Parsons,et al.  Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. , 2000, The Journal of experimental biology.

[62]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[63]  I. Horáček,et al.  Bats of the Palearctic Region: a taxonomic and biogeographic review , 2000 .

[64]  I. Zagorodniuk Taxonomy, biogeography and abundance of the horseshoe bats in Eastern Europe , 1999 .

[65]  W. Bogdanowicz Phenetic relationships among bats of the family Rhinolophidae , 1992 .

[66]  J. Palmeirim Bats of Portugal : zoogeography and systematics / by Jorge M. Palmeirim. , 1990 .

[67]  M. Qumsiyeh The Bats of Egypt , 1985 .

[68]  A. F. Deblase The bats of Iran : systematics, distribution, ecology / Anthony F. DeBlase. , 1980 .

[69]  G. Corbet Mammals of the Palaearctic Region: A Taxonomic Review , 1978 .

[70]  P. Grant Convergent and divergent character displacement , 1972 .

[71]  D. Lay A study of the mammals of Iran: resulting from the Street Expedition of 1962-63 [by] Douglas M. Lay. , 1967 .

[72]  D. Lay A study of the mammals of Iranc resulting from the Street Expedition of 1962-63 , 1967 .

[73]  D. Lay,et al.  A study of the mammals of Iran , 1967 .

[74]  D. Harrison,et al.  The mammals of Arabia , 1964 .

[75]  M. SAINT GIRONS,et al.  NOTES SUR LES MAMMIFERES DE FRANCE , 1962 .

[76]  S. I. Ognev A synopsis of the Russian bats , 1927 .

[77]  G. Yule,et al.  A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[78]  K. Andersen XXXIV.—Diagnoses of new bats of the families Rhinolophidæ and Megadermatidæ , 1918 .

[79]  K. Andersen XLIX.—On the geographical races of the Lesser Horseshoe Bat (Rhinolophus hipposiderus) , 1907 .

[80]  Kund Anderson LXII.—On von Heuglin's, Rüppell's, and Sundevall's Types of African Rhinolophi , 1904 .

[81]  Á. Cabrera Ensayo monográfico sobre los quirópteros de España , 1904 .

[82]  É. Trouessart Catalogue des mammiferes vivants et fossiles (carnivores) , 1885 .

[83]  J. H. Blasius Naturgeschichte der Säugethiere Deutschlands und der Angrenzenden Länder von Mitteleuropa. Mit 290 Abbildungen im Texte. , 1857 .

[84]  H. D. D. Blainville Ostéographie ou description iconographique comparée du squeoette et du système dentaire des mammifères récents et fossiles pour servir de base a la zoologie et a la géologie , 1839 .

[85]  G. Montagu X. An Account of the larger and lesser Species of Horse-shoe Bats, proving them to be distinct; together with a Description of Vespertilio Barbastellus, taken in the South of Devonshire. , 1808 .

[86]  Geoffroy Saint-Hilaire,et al.  Mémoires d'histoire naturelle , 1802 .

[87]  Johann Matthäus Bechstein,et al.  Gemeinnützige Naturgeschichte Deutschlands nach allen drey Reichen : ein Handbuch zur deutlichern und vollständigern Selbstbelehrung besonders für Forstmänner, Jugendlehrer und Oekonomen / von J.M. Bechstein ... , 1801 .

[88]  J. Bock,et al.  Thomas Pennant's Allgemeine Uebersicht der vierfüssigen Thiere / , 1800 .

[89]  L. J. Fitzinger Kritische Durchsicht der Ordnung der Flatterthiere oder Handflügler (Chiroptera). Familie der Flughunde (Cynopteri). I. Abtheilung , 2022 .