Counting walks in a quadrant: a unified approach via boundary value problems

The aim of this article is to introduce a unified method to obtain explicit integral representations of the trivariate generating function counting the walks with small steps which are confined to a quarter plane. For many models, this yields for the first time an explicit expression of the counting generating function. Moreover, the nature of the integrand of the integral formulations is shown to be directly dependent on the finiteness of a naturally attached group of birational transformations as well as on the sign of the covariance of the walk

[1]  Marni Mishna,et al.  Two non-holonomic lattice walks in the quarter plane , 2009, Theor. Comput. Sci..

[2]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[3]  G. S. Litvinchuk,et al.  Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift , 2000 .

[4]  Rosena R. X. Du,et al.  Crossings and nestings of matchings and partitions , 2005, math/0501230.

[5]  Guy Fayolle,et al.  On the Holonomy or Algebraicity of Generating Functions Counting Lattice Walks in the Quarter-Plane , 2010, 1004.1733.

[6]  Doron Zeilberger,et al.  Proof of Ira Gessel's lattice path conjecture , 2008, Proceedings of the National Academy of Sciences.

[7]  Ira M. Gessel,et al.  A probabilistic method for lattice path enumeration , 1986 .

[8]  L. Flatto,et al.  Erratum: Two Parallel Queues Created by Arrivals with Two Demands I , 1985 .

[9]  Manuel Kauers,et al.  The complete Generating Function for Gessel Walks is Algebraic , 2009, ArXiv.

[10]  Kilian Raschel,et al.  Explicit expression for the generating function counting Gessel's walks , 2009, Adv. Appl. Math..

[11]  L. Flatto,et al.  Two parallel queues created by arrivals with two demands. II , 1984 .

[12]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[13]  Manuel Kauers,et al.  Automatic Classification of Restricted Lattice Walks , 2008, 0811.2899.

[14]  Mireille Bousquet-M'elou,et al.  Walks in the quarter plane: Kreweras’ algebraic model , 2004, math/0401067.

[15]  J. C. Burkill,et al.  Complex Functions , 1968, Nature.

[16]  Mireille Bousquet-Mélou,et al.  Walks confined in a quadrant are not always D-finite , 2003, Theor. Comput. Sci..

[17]  Green functions for killed random walks in the Weyl chamber of Sp(4) , 2009, 0910.4355.

[18]  Marni Mishna,et al.  Walks with small steps in the quarter plane , 2008, 0810.4387.