DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis

Yelina et al. show that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. This work demonstrates that DNA methylation plays a key role in establishing domains of meiotic recombination along chromosomes.

[1]  L. Chelysheva,et al.  AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms , 2015, PLoS genetics.

[2]  Gunnar Rätsch,et al.  DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation , 2015, eLife.

[3]  Jelle Van Leene,et al.  Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM , 2015, Proceedings of the National Academy of Sciences.

[4]  Jianbing Yan,et al.  Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize , 2015, Nature Communications.

[5]  Peter J. Bradbury,et al.  Recombination in diverse maize is stable, predictable, and associated with genetic load , 2015, Proceedings of the National Academy of Sciences.

[6]  Damian Roqueiro,et al.  Genome-wide analysis of local chromatin packing in Arabidopsis thaliana , 2015, Genome research.

[7]  D. Weigel,et al.  Rapid and Inexpensive Whole-Genome Genotyping-by-Sequencing for Crossover Localization and Fine-Scale Genetic Mapping , 2015, G3: Genes, Genomes, Genetics.

[8]  Matteo Pellegrini,et al.  Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. , 2014, Molecular cell.

[9]  Marc W. Schmid,et al.  Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. , 2014, Molecular cell.

[10]  S. Keeney,et al.  Temporospatial Coordination of Meiotic DNA Replication and Recombination via DDK Recruitment to Replisomes , 2014, Cell.

[11]  Hadi Quesneville,et al.  Structural and functional partitioning of bread wheat chromosome 3B , 2014, Science.

[12]  R. Mercier,et al.  FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers , 2014, Nucleic acids research.

[13]  N. Kleckner,et al.  Crossover Patterning by the Beam-Film Model: Analysis and Implications , 2014, PLoS genetics.

[14]  D. Patel,et al.  Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis , 2013, Nature Structural & Molecular Biology.

[15]  S. Wessler,et al.  Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing , 2013, Proceedings of the National Academy of Sciences.

[16]  D. Weigel,et al.  The genomic landscape of meiotic crossovers and gene conversions in Arabidopsis thaliana , 2013, eLife.

[17]  I. Henderson,et al.  Contrasted Patterns of Crossover and Non-crossover at Arabidopsis thaliana Meiotic Recombination Hotspots , 2013, PLoS genetics.

[18]  Krystyna A. Kelly,et al.  High-throughput analysis of meiotic crossover frequency and interference via flow cytometry of fluorescent pollen in Arabidopsis thaliana , 2013, Nature Protocols.

[19]  O. Martin,et al.  Intraspecific variation of recombination rate in maize , 2013, Genome Biology.

[20]  O. Martin,et al.  Intraspecific variation of recombination rate in maize , 2013, Genome Biology.

[21]  I. Hellmann,et al.  Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden , 2013, Nature Genetics.

[22]  D. Coleman-Derr,et al.  The Arabidopsis Nucleosome Remodeler DDM1 Allows DNA Methyltransferases to Access H1-Containing Heterochromatin , 2013, Cell.

[23]  S. Jacobsen,et al.  Comprehensive Analysis of Silencing Mutants Reveals Complex Regulation of the Arabidopsis Methylome , 2013, Cell.

[24]  E. Dennis Faculty Opinions recommendation of Loss of the DNA methyltransferase MET1 Induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana. , 2012 .

[25]  Mihaela M. Martis,et al.  A physical, genetic and functional sequence assembly of the barley genome , 2012, Nature.

[26]  Luke E. Berchowitz,et al.  Deep Genome-Wide Measurement of Meiotic Gene Conversion Using Tetrad Analysis in Arabidopsis thaliana , 2012, PLoS genetics.

[27]  R. Jansen,et al.  Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation , 2012, Proceedings of the National Academy of Sciences.

[28]  Krystyna A. Kelly,et al.  Epigenetic Remodeling of Meiotic Crossover Frequency in Arabidopsis thaliana DNA Methyltransferase Mutants , 2012, PLoS genetics.

[29]  M. Novatchkova,et al.  The Arabidopsis HEI10 Is a New ZMM Protein Related to Zip3 , 2012, PLoS genetics.

[30]  G. Copenhaver,et al.  FANCM Limits Meiotic Crossovers , 2012, Science.

[31]  Christopher J. Hale,et al.  MORC Family ATPases Required for Heterochromatin Condensation and Gene Silencing , 2012, Science.

[32]  Daniel W. A. Buchan,et al.  The tomato genome sequence provides insights into fleshy fruit evolution , 2012, Nature.

[33]  J. Higgins,et al.  The Fanconi Anemia Ortholog FANCM Ensures Ordered Homologous Recombination in Both Somatic and Meiotic Cells in Arabidopsis[W] , 2012, Plant Cell.

[34]  A. Levy,et al.  Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis , 2012, Proceedings of the National Academy of Sciences.

[35]  E. Bucher,et al.  Loss of DNA methylation affects the recombination landscape in Arabidopsis , 2012, Proceedings of the National Academy of Sciences.

[36]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[37]  K. Mechtler,et al.  Inter-Homolog Crossing-Over and Synapsis in Arabidopsis Meiosis Are Dependent on the Chromosome Axis Protein AtASY3 , 2012, PLoS genetics.

[38]  N. Warthmann,et al.  The recombination landscape in Arabidopsis thaliana F2 populations , 2011, Heredity.

[39]  O. Martin,et al.  Genome-Wide Crossover Distribution in Arabidopsis thaliana Meiosis Reveals Sex-Specific Patterns along Chromosomes , 2011, PLoS genetics.

[40]  Karsten M. Borgwardt,et al.  Whole-genome sequencing of multiple Arabidopsis thaliana populations , 2011, Nature Genetics.

[41]  K. Shirahige,et al.  Spo11-Accessory Proteins Link Double-Strand Break Sites to the Chromosome Axis in Early Meiotic Recombination , 2011, Cell.

[42]  Felix Krueger,et al.  Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications , 2011, Bioinform..

[43]  C. Saintenac,et al.  Variation in crossover rates across a 3-Mb contig of bread wheat (Triticum aestivum) reveals the presence of a meiotic recombination hotspot , 2011, Chromosoma.

[44]  M. Pellegrini,et al.  Relationship between nucleosome positioning and DNA methylation , 2010, Nature.

[45]  L. Chelysheva,et al.  An Easy Protocol for Studying Chromatin and Recombination Protein Dynamics during Arabidopsisthaliana Meiosis: Immunodetection of Cohesins, Histones and MLH1 , 2010, Cytogenetic and Genome Research.

[46]  Matthew W. Vaughn,et al.  Arabidopsis thaliana Chromosome 4 Replicates in Two Phases That Correlate with Chromatin State , 2010, PLoS genetics.

[47]  D. Zilberman,et al.  Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation , 2010, Science.

[48]  G. Thon,et al.  RNAi and heterochromatin repress centromeric meiotic recombination , 2010, Proceedings of the National Academy of Sciences.

[49]  M. Pellegrini,et al.  Conservation and divergence of methylation patterning in plants and animals , 2010, Proceedings of the National Academy of Sciences.

[50]  N. Kleckner,et al.  Recombination Proteins Mediate Meiotic Spatial Chromosome Organization and Pairing , 2010, Cell.

[51]  David G Mets,et al.  RTEL-1 Enforces Meiotic Crossover Interference and Homeostasis , 2010, Science.

[52]  Julie A. Law,et al.  Establishing, maintaining and modifying DNA methylation patterns in plants and animals , 2010, Nature Reviews Genetics.

[53]  I. Henderson,et al.  Accurate sodium bisulfite sequencing in plants , 2010, Epigenetics.

[54]  Sanzhen Liu,et al.  Mu Transposon Insertion Sites and Meiotic Recombination Events Co-Localize with Epigenetic Marks for Open Chromatin across the Maize Genome , 2009, PLoS genetics.

[55]  T. Graves,et al.  The Physical and Genetic Framework of the Maize B73 Genome , 2009, PLoS genetics.

[56]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[57]  J. Poulain,et al.  A Role for RNAi in the Selective Correction of DNA Methylation Defects , 2009, Science.

[58]  M. Novatchkova,et al.  SHOC1, an XPF Endonuclease-Related Protein, Is Essential for the Formation of Class I Meiotic Crossovers , 2008, Current Biology.

[59]  Robert A. Martienssen,et al.  Kismeth: Analyzer of plant methylation states through bisulfite sequencing , 2008, BMC Bioinformatics.

[60]  M. Pellegrini,et al.  Genome-Wide Association of Histone H3 Lysine Nine Methylation with CHG DNA Methylation in Arabidopsis thaliana , 2008, PloS one.

[61]  J. Higgins,et al.  AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis. , 2008, The Plant journal : for cell and molecular biology.

[62]  I. Henderson,et al.  Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. , 2008, Genes & development.

[63]  R. Lister,et al.  Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis , 2008, Cell.

[64]  S. Nelson,et al.  Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning , 2008, Nature.

[65]  J. Higgins,et al.  Expression and functional analysis of AtMUS81 in Arabidopsis meiosis reveals a role in the second pathway of crossing-over. , 2008, The Plant journal : for cell and molecular biology.

[66]  O. Mathieu,et al.  Transgenerational Stability of the Arabidopsis Epigenome Is Coordinated by CG Methylation , 2007, Cell.

[67]  E. Sanchez-Moran,et al.  ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. , 2007, Genes & development.

[68]  Luke E. Berchowitz,et al.  The Role of AtMUS81 in Interference-Insensitive Crossovers in A. thaliana , 2007, PLoS genetics.

[69]  M. Doutriaux,et al.  Zip4/Spo22 Is Required for Class I CO Formation but Not for Synapsis Completion in Arabidopsis thaliana , 2007, PLoS genetics.

[70]  E. Barillot,et al.  Genome-Wide Redistribution of Meiotic Double-Strand Breaks in Saccharomyces cerevisiae , 2006, Molecular and Cellular Biology.

[71]  T. Kuromori,et al.  Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. , 2006, The Plant journal : for cell and molecular biology.

[72]  M. Pellegrini,et al.  Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis , 2006, Cell.

[73]  M. J. Neale,et al.  Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation. , 2006, Biochemical Society transactions.

[74]  N. Kleckner Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex , 2006, Chromosoma.

[75]  A. Stuitje,et al.  A new seed-based assay for meiotic recombination in Arabidopsis thaliana. , 2005, The Plant journal : for cell and molecular biology.

[76]  Hong Ma,et al.  The Arabidopsis ROCK-N-ROLLERS gene encodes a homolog of the yeast ATP-dependent DNA helicase MER3 and is required for normal meiotic crossover formation. , 2005, The Plant journal : for cell and molecular biology.

[77]  M. Doutriaux,et al.  Two Meiotic Crossover Classes Cohabit in Arabidopsis One Is Dependent on MER3,whereas the Other One Is Not , 2005, Current Biology.

[78]  J. Higgins,et al.  The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. , 2004, Genes & development.

[79]  S. Keeney,et al.  Where the crossovers are: recombination distributions in mammals , 2004, Nature Reviews Genetics.

[80]  Marjori Matzke,et al.  Role of the DRM and CMT3 Methyltransferases in RNA-Directed DNA Methylation , 2003, Current Biology.

[81]  J. Paszkowski,et al.  Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis , 2003, Nature Genetics.

[82]  A. Probst,et al.  Two means of transcriptional reactivation within heterochromatin. , 2003, The Plant journal : for cell and molecular biology.

[83]  S. Jacobsen,et al.  DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis , 2002, The EMBO journal.

[84]  Ingo Schubert,et al.  Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[85]  F. Franklin,et al.  Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica , 2002, Journal of Cell Science.

[86]  Xiaofeng Cao,et al.  Interplay between Two Epigenetic Marks DNA Methylation and Histone H3 Lysine 9 Methylation , 2002, Current Biology.

[87]  S. Jacobsen,et al.  Role of the Arabidopsis DRM Methyltransferases in De Novo DNA Methylation and Gene Silencing , 2002, Current Biology.

[88]  G. Copenhaver,et al.  Crossover interference in Arabidopsis. , 2002, Genetics.

[89]  H. Fu,et al.  Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[90]  H. Fu,et al.  The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[91]  T. Kakutani,et al.  Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis , 2001, Nature.

[92]  M. Grelon,et al.  AtSPO11‐1 is necessary for efficient meiotic recombination in plants , 2001, The EMBO journal.

[93]  M. Lichten,et al.  Direct coupling between meiotic DNA replication and recombination initiation. , 2000, Science.

[94]  M. Matzke,et al.  Transcriptional silencing and promoter methylation triggered by double‐stranded RNA , 2000, The EMBO journal.

[95]  M. Marra,et al.  Genetic definition and sequence analysis of Arabidopsis centromeres. , 1999, Science.

[96]  H. L. Sänger,et al.  Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation. , 1999, Nucleic acids research.

[97]  J. Rossignol,et al.  Suppression of crossing-over by DNA methylation in Ascobolus. , 1998, Genes & development.

[98]  G. Copenhaver,et al.  Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[99]  N. Kleckner,et al.  Identification of double holliday junctions as intermediates in meiotic recombination , 1995, Cell.

[100]  H. L. Sänger,et al.  RNA-directed de novo methylation of genomic sequences in plants , 1994, Cell.

[101]  R. Martienssen,et al.  Arabidopsis thaliana DNA methylation mutants. , 1993, Science.

[102]  V. Sundaresan,et al.  A recombination hotspot in the maize A1 intragenic region , 1991, Theoretical and Applied Genetics.

[103]  D. G. Watts,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[104]  Jack W. Szostak,et al.  The double-strand-break repair model for recombination , 1983, Cell.

[105]  Chinese Academy of Sciences , 2014, Nature.

[106]  B. de Massy Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. , 2013, Annual review of genetics.

[107]  A. Auton,et al.  Estimating recombination rates from genetic variation in humans. , 2012, Methods in molecular biology.

[108]  J. Drouaud,et al.  Characterization of meiotic crossovers in pollen from Arabidopsis thaliana. , 2011, Methods in molecular biology.

[109]  Luke E. Berchowitz,et al.  Fluorescent Arabidopsis tetrads: a visual assay for quickly developing large crossover and crossover interference data sets , 2007, Nature Protocols.

[110]  A. Villeneuve,et al.  Whence Meiosis? , 2001, Cell.

[111]  A. Goldman,et al.  Meiotic recombination hotspots. , 1995, Annual review of genetics.

[112]  Thomas J. Hardcastle,et al.  Nature Genetics Advance Online Publication Arabidopsis Meiotic Crossover Hot Spots Overlap with H2a.z Nucleosomes at Gene Promoters , 2022 .