Unusual findings on studying surfactant solutions: displacing solvatochromic pyridinium N-phenolate towards outlying areas of rod-like micelles?
暂无分享,去创建一个
[1] D. Avnir,et al. Getting a library of activities from a single compound: tunability and very large shifts in acidity constants induced by sol--gel entrapped micelles. , 2001, Journal of the American Chemical Society.
[2] Luzia P. Novaki,et al. Solvatochromism in pure and binary solvent mixtures: effects of the molecular structure of the zwitterionic probe , 2000 .
[3] W. Werncke,et al. Vibrational analysis and excited-state geometric changes of betaine-30 derived from Raman and infrared spectra combined withab initio calculations , 2000 .
[4] J. Engberts,et al. Wormlike Micellar and Vesicular Phases in Aqueous Solutions of Single-Tailed Surfactants with Aromatic Counterions , 2000 .
[5] O. A. Seoud,et al. Microscopic Polarities of Interfacial Regions of Aqueous Cationic Micelles: Effects of Structures of the Solvatochromic Probe and the Surfactant† , 2000 .
[6] Y. Ikushima,et al. Micropolarity of sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles prepared in supercritical ethane and near-critical propane , 1999 .
[7] A. Beezer,et al. Calorimetric evidence of aggregation of the ET(30) dye in alcoholic solutions , 1999 .
[8] J. Abboud,et al. Critical compilation of scales of solvent parameters. Part I. Pure, non-hydrogen bond donor solvents , 1999 .
[9] J. Maxka,et al. New hydrophobic π* indicators. Solvatochromic properties and interactions in micellar solutions , 1998 .
[10] K. Karukstis,et al. Fluorescence Investigation of Multiple Partitioning Sites in Aqueous and Reverse Micelles , 1998 .
[11] B. K. Mishra,et al. Interaction of N-alkyl styryl pyridinium dyes with TX-100 in aqueous medium : Role of the alkyl chain during solubilisation , 1998 .
[12] P. Carr,et al. Study of the Polarity and Hydrogen-Bond Ability of Dodecyltrimethylammonium Bromide Micelles by the Kamlet−Taft Solvatochromic Comparison Method , 1998 .
[13] N. Mchedlov-Petrossyan,et al. Ionic equilibria in microheterogeneous systems Protolytic behaviour of indicator dyes in mixed phosphatidylcholine–diphosphatidylglycerol liposomes , 1998 .
[14] R. Clarke,et al. Effect of lipid structure on the dipole potential of phosphatidylcholine bilayers. , 1997, Biochimica et biophysica acta.
[15] R. Cressely,et al. Influence of sodium salicylate on the rheological behaviour of an aqueous CTAB solution , 1997 .
[16] S. Mondal,et al. Interaction of ketocyanine dyes with cationic, anionic and neutral micelles , 1996 .
[17] R. McKelvey,et al. Convergent Synthesis of Betaine-30, a Solvatochromic Dye: An Advanced Undergraduate Project and Demonstration , 1996 .
[18] G. Warr,et al. Surface Potentials and Ion Binding in Tetradecyltrimethylammonium Bromide/Sodium Salicylate Micellar Solutions , 1996 .
[19] Reinhard Miller,et al. UV/vis spectroscopic investigations of micellisation of homologous N-alkyl betaines using the dye indicator ET(30) , 1995 .
[20] G. Stevens,et al. An attenuated total internal reflectance spectroscopy study of ET(30) at the free oil-water interface , 1995 .
[21] J. Ortega,et al. Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 1. A comparison of several preferential solvation models for describing ET(30) polarity of bipolar hydrogen bond acceptor-cosolvent mixtures , 1995 .
[22] C. Reichardt,et al. Solvatochromic Dyes as Solvent Polarity Indicators , 1994 .
[23] K. A. Connors,et al. Solvent effects on chemical processes. Part 7. Quantitative description of the composition dependence of the solvent polarity measure ET(30) in binary aqueous–organic solvent mixtures , 1994 .
[24] R. Varadaraj,et al. Probing hydrophobic microdomains of hydrophobically associating acrylamide-N-alkylacrylamide copolymers in solution using a solvatochromic absorption dye probe , 1993 .
[25] J. Strnad,et al. Effect of aromatic solubilizates on the shape of CTABr micelles , 1993 .
[26] T. Imae,et al. Size and electrophoretic mobility of tetradecyltrimethylammonium salicylate (C14TASal) micelles in aqueous media , 1992 .
[27] K. Zierold,et al. On the shape of giant micelles in aqueous solutions of cetyltrimetylammoniumbromide (CTAB) , 1992 .
[28] T. A. Shakhverdov,et al. the surfactant-induced formation of J- and H-aggregates in aqueous pseudoisocyanine solutions , 1992 .
[29] U. Simonis,et al. ORIENTATIONAL BINDING OF SUBSTITUTED NAPHTHOATE COUNTERIONS TO THE TETRADECYLTRIMETHYLAMMONIUM BROMIDE MICELLAR INTERFACE , 1991 .
[30] Romuald I. Zalewski,et al. Similarity models in organic chemistry, biochemistry, and related fields , 1991 .
[31] K. Miyajima,et al. Introduction of generalized polarity and generalized proton donor parameters in the evaluation of microenvironments at micellar and liposomal surfaces , 1990 .
[32] K. Schanze,et al. Solubilization sites and orientations in microheterogeneous media: studies using donor-acceptor-substituted azobenzenes and bichromophoric solvatochromic molecules , 1989 .
[33] Z. A. Schelly,et al. Reverse micelles of Aerosol-OT in benzene. 4. Investigation of the micropolarity using 1-methyl-8-oxyquinolinium betaine as a probe , 1989 .
[34] O. Wolfbeis,et al. ET(33), a solvatochromic polarity and micellar probe for neutral aqueous solutions , 1989 .
[35] M. Jansson,et al. Influences of counterion hydrophobicity on the formation of ionic micelles , 1989 .
[36] Calum J. Drummond,et al. The physicochemical properties of self-assembled surfactant aggregates as determined by some molecular spectroscopic probe techniques , 1988 .
[37] J. N. Ness,et al. Direct electron microscopical observation of rod-like micelles of cetyltrimethylammonium bromide in aqueous sodium bromide solution , 1988 .
[38] Thomas W. Healy,et al. Interfacial properties of a novel group of solvatochromic acid-base indicators in self-assembled surfactant aggregates , 1988 .
[39] O. Wolfbeis,et al. An Improved Synthesis of the Solvatochromic Dye ET-30 , 1988 .
[40] C. Reichardt. Solvents and Solvent Effects in Organic Chemistry , 1988 .
[41] C. Drummond,et al. A single spectroscopic probe for the determination of both the interfacial solvent properties and electrostatic surface potential of model lipid membranes , 1986 .
[42] Y. Ueno,et al. Fluorescence studies on the characterization and solubilizing abilities of sodium dodecyl sulfate, hexadecyltrimethylammonium chloride, and Triton X-100 micelles , 1985 .
[43] P. Wrona,et al. EMPIRICAL PARAMETERS OF LEWIS ACIDITY AND BASICITY FOR AQUEOUS BINARY SOLVENT MIXTURES , 1985 .
[44] A. L. Underwood,et al. Organic counterions and micellar parameters: substituent effects in a series of benzoates , 1984 .
[45] M. Nakagaki,et al. The Location and Microenvironment of Dimerizing Cationic Dyes in Lipid Membranes as Studied by Means of Their Absorption Spectra , 1983 .
[46] H. Baumgärtel,et al. Eine 1H‐NMR‐spektroskopische Untersuchung zur Einlagerung von Pyridinium‐N‐phenoxidbetainen in Micellen , 1983 .
[47] Christian Reichardt,et al. Über Pyridinium-N-phenolat-Betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln, X. Erweiterung, Korrektur und Neudefinition der ET-Lösungsmittelpolaritätsskala mit Hilfe eines lipophilen penta-tert-butyl-substituierten Pyridinium-N-phenolat-Betainfarbstoffes , 1983 .
[48] H. Langhals. Polarity of Binary Liquid Mixtures , 1982 .
[49] B. Kozankiewicz,et al. Investigation of micelles, microemulsions, and phospholipid bilayers with the pyridinium N-phenolbetaine et(30), a polarity probe for aqueous interfaces , 1981 .
[50] N. Funasaki. Micellar effects on the kinetics and equilibrium of chemical reactions in salt solutions , 1979 .
[51] P. Fromherz,et al. Lipoid pH indicators as probes of electrical potential and polarity in micelles , 1977 .
[52] B. Robinson,et al. Dynamics of small molecule-micelle interactions: Charge and pH effects on the kinetics of the interaction of dyes with micelles , 1977 .
[53] P. Mukerjee. Solubilization of benzoic acid derivatives by nonionic surfactants: location of solubilizates in hydrocarbon core of micelles and polyoxyethylene mantle. , 1971, Journal of pharmaceutical sciences.
[54] R. Allmann. Die Kristallstruktur des 2.6-Diphenyl-4-(4-bromphenyl)-N-(p-oxy-ra,m'-diphenyl)- phenyl-pyridinium-betain-monoäthanolats , 1969 .
[55] K. Dimroth,et al. Über Pyridinium‐N‐phenol‐betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln , 1963 .