Unusual findings on studying surfactant solutions: displacing solvatochromic pyridinium N-phenolate towards outlying areas of rod-like micelles?

[1]  D. Avnir,et al.  Getting a library of activities from a single compound: tunability and very large shifts in acidity constants induced by sol--gel entrapped micelles. , 2001, Journal of the American Chemical Society.

[2]  Luzia P. Novaki,et al.  Solvatochromism in pure and binary solvent mixtures: effects of the molecular structure of the zwitterionic probe , 2000 .

[3]  W. Werncke,et al.  Vibrational analysis and excited-state geometric changes of betaine-30 derived from Raman and infrared spectra combined withab initio calculations , 2000 .

[4]  J. Engberts,et al.  Wormlike Micellar and Vesicular Phases in Aqueous Solutions of Single-Tailed Surfactants with Aromatic Counterions , 2000 .

[5]  O. A. Seoud,et al.  Microscopic Polarities of Interfacial Regions of Aqueous Cationic Micelles: Effects of Structures of the Solvatochromic Probe and the Surfactant† , 2000 .

[6]  Y. Ikushima,et al.  Micropolarity of sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles prepared in supercritical ethane and near-critical propane , 1999 .

[7]  A. Beezer,et al.  Calorimetric evidence of aggregation of the ET(30) dye in alcoholic solutions , 1999 .

[8]  J. Abboud,et al.  Critical compilation of scales of solvent parameters. Part I. Pure, non-hydrogen bond donor solvents , 1999 .

[9]  J. Maxka,et al.  New hydrophobic π* indicators. Solvatochromic properties and interactions in micellar solutions , 1998 .

[10]  K. Karukstis,et al.  Fluorescence Investigation of Multiple Partitioning Sites in Aqueous and Reverse Micelles , 1998 .

[11]  B. K. Mishra,et al.  Interaction of N-alkyl styryl pyridinium dyes with TX-100 in aqueous medium : Role of the alkyl chain during solubilisation , 1998 .

[12]  P. Carr,et al.  Study of the Polarity and Hydrogen-Bond Ability of Dodecyltrimethylammonium Bromide Micelles by the Kamlet−Taft Solvatochromic Comparison Method , 1998 .

[13]  N. Mchedlov-Petrossyan,et al.  Ionic equilibria in microheterogeneous systems Protolytic behaviour of indicator dyes in mixed phosphatidylcholine–diphosphatidylglycerol liposomes , 1998 .

[14]  R. Clarke,et al.  Effect of lipid structure on the dipole potential of phosphatidylcholine bilayers. , 1997, Biochimica et biophysica acta.

[15]  R. Cressely,et al.  Influence of sodium salicylate on the rheological behaviour of an aqueous CTAB solution , 1997 .

[16]  S. Mondal,et al.  Interaction of ketocyanine dyes with cationic, anionic and neutral micelles , 1996 .

[17]  R. McKelvey,et al.  Convergent Synthesis of Betaine-30, a Solvatochromic Dye: An Advanced Undergraduate Project and Demonstration , 1996 .

[18]  G. Warr,et al.  Surface Potentials and Ion Binding in Tetradecyltrimethylammonium Bromide/Sodium Salicylate Micellar Solutions , 1996 .

[19]  Reinhard Miller,et al.  UV/vis spectroscopic investigations of micellisation of homologous N-alkyl betaines using the dye indicator ET(30) , 1995 .

[20]  G. Stevens,et al.  An attenuated total internal reflectance spectroscopy study of ET(30) at the free oil-water interface , 1995 .

[21]  J. Ortega,et al.  Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 1. A comparison of several preferential solvation models for describing ET(30) polarity of bipolar hydrogen bond acceptor-cosolvent mixtures , 1995 .

[22]  C. Reichardt,et al.  Solvatochromic Dyes as Solvent Polarity Indicators , 1994 .

[23]  K. A. Connors,et al.  Solvent effects on chemical processes. Part 7. Quantitative description of the composition dependence of the solvent polarity measure ET(30) in binary aqueous–organic solvent mixtures , 1994 .

[24]  R. Varadaraj,et al.  Probing hydrophobic microdomains of hydrophobically associating acrylamide-N-alkylacrylamide copolymers in solution using a solvatochromic absorption dye probe , 1993 .

[25]  J. Strnad,et al.  Effect of aromatic solubilizates on the shape of CTABr micelles , 1993 .

[26]  T. Imae,et al.  Size and electrophoretic mobility of tetradecyltrimethylammonium salicylate (C14TASal) micelles in aqueous media , 1992 .

[27]  K. Zierold,et al.  On the shape of giant micelles in aqueous solutions of cetyltrimetylammoniumbromide (CTAB) , 1992 .

[28]  T. A. Shakhverdov,et al.  the surfactant-induced formation of J- and H-aggregates in aqueous pseudoisocyanine solutions , 1992 .

[29]  U. Simonis,et al.  ORIENTATIONAL BINDING OF SUBSTITUTED NAPHTHOATE COUNTERIONS TO THE TETRADECYLTRIMETHYLAMMONIUM BROMIDE MICELLAR INTERFACE , 1991 .

[30]  Romuald I. Zalewski,et al.  Similarity models in organic chemistry, biochemistry, and related fields , 1991 .

[31]  K. Miyajima,et al.  Introduction of generalized polarity and generalized proton donor parameters in the evaluation of microenvironments at micellar and liposomal surfaces , 1990 .

[32]  K. Schanze,et al.  Solubilization sites and orientations in microheterogeneous media: studies using donor-acceptor-substituted azobenzenes and bichromophoric solvatochromic molecules , 1989 .

[33]  Z. A. Schelly,et al.  Reverse micelles of Aerosol-OT in benzene. 4. Investigation of the micropolarity using 1-methyl-8-oxyquinolinium betaine as a probe , 1989 .

[34]  O. Wolfbeis,et al.  ET(33), a solvatochromic polarity and micellar probe for neutral aqueous solutions , 1989 .

[35]  M. Jansson,et al.  Influences of counterion hydrophobicity on the formation of ionic micelles , 1989 .

[36]  Calum J. Drummond,et al.  The physicochemical properties of self-assembled surfactant aggregates as determined by some molecular spectroscopic probe techniques , 1988 .

[37]  J. N. Ness,et al.  Direct electron microscopical observation of rod-like micelles of cetyltrimethylammonium bromide in aqueous sodium bromide solution , 1988 .

[38]  Thomas W. Healy,et al.  Interfacial properties of a novel group of solvatochromic acid-base indicators in self-assembled surfactant aggregates , 1988 .

[39]  O. Wolfbeis,et al.  An Improved Synthesis of the Solvatochromic Dye ET-30 , 1988 .

[40]  C. Reichardt Solvents and Solvent Effects in Organic Chemistry , 1988 .

[41]  C. Drummond,et al.  A single spectroscopic probe for the determination of both the interfacial solvent properties and electrostatic surface potential of model lipid membranes , 1986 .

[42]  Y. Ueno,et al.  Fluorescence studies on the characterization and solubilizing abilities of sodium dodecyl sulfate, hexadecyltrimethylammonium chloride, and Triton X-100 micelles , 1985 .

[43]  P. Wrona,et al.  EMPIRICAL PARAMETERS OF LEWIS ACIDITY AND BASICITY FOR AQUEOUS BINARY SOLVENT MIXTURES , 1985 .

[44]  A. L. Underwood,et al.  Organic counterions and micellar parameters: substituent effects in a series of benzoates , 1984 .

[45]  M. Nakagaki,et al.  The Location and Microenvironment of Dimerizing Cationic Dyes in Lipid Membranes as Studied by Means of Their Absorption Spectra , 1983 .

[46]  H. Baumgärtel,et al.  Eine 1H‐NMR‐spektroskopische Untersuchung zur Einlagerung von Pyridinium‐N‐phenoxidbetainen in Micellen , 1983 .

[47]  Christian Reichardt,et al.  Über Pyridinium-N-phenolat-Betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln, X. Erweiterung, Korrektur und Neudefinition der ET-Lösungsmittelpolaritätsskala mit Hilfe eines lipophilen penta-tert-butyl-substituierten Pyridinium-N-phenolat-Betainfarbstoffes , 1983 .

[48]  H. Langhals Polarity of Binary Liquid Mixtures , 1982 .

[49]  B. Kozankiewicz,et al.  Investigation of micelles, microemulsions, and phospholipid bilayers with the pyridinium N-phenolbetaine et(30), a polarity probe for aqueous interfaces , 1981 .

[50]  N. Funasaki Micellar effects on the kinetics and equilibrium of chemical reactions in salt solutions , 1979 .

[51]  P. Fromherz,et al.  Lipoid pH indicators as probes of electrical potential and polarity in micelles , 1977 .

[52]  B. Robinson,et al.  Dynamics of small molecule-micelle interactions: Charge and pH effects on the kinetics of the interaction of dyes with micelles , 1977 .

[53]  P. Mukerjee Solubilization of benzoic acid derivatives by nonionic surfactants: location of solubilizates in hydrocarbon core of micelles and polyoxyethylene mantle. , 1971, Journal of pharmaceutical sciences.

[54]  R. Allmann Die Kristallstruktur des 2.6-Diphenyl-4-(4-bromphenyl)-N-(p-oxy-ra,m'-diphenyl)- phenyl-pyridinium-betain-monoäthanolats , 1969 .

[55]  K. Dimroth,et al.  Über Pyridinium‐N‐phenol‐betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln , 1963 .