A novel route for the synthesis of ultrafine WC-15 wt %Co cemented carbides

[1]  Junwu Liu,et al.  Effects of partial substitution of copper for cobalt on the microstructure and properties of ultrafine-grained WC-Co cemented carbides , 2018 .

[2]  Hao Chen,et al.  Effects of VC/Cr3C2 on WC grain morphologies and mechanical properties of WC-6wt.%Co cemented carbides , 2017 .

[3]  Hao Chen,et al.  Synthesis of ultrafine WC‐Co composite powders under hydrogen atmosphere with in situ carbon via a one‐step reduction‐carbonization process , 2017 .

[4]  T. Brynk,et al.  Microstructure and mechanical properties of WC-40Co composite obtained by impact sintering in solid state , 2016 .

[5]  J. Ruan,et al.  The effects of fine WC contents and temperature on the microstructure and mechanical properties of inhomogeneous WC-(fine WC-Co) cemented carbides , 2016 .

[6]  Hong He,et al.  A facile route to synthesize WC–Co nanocomposite powders and properties of sintered bulk , 2016 .

[7]  J. Ruan,et al.  Synthesis and characterization of WC-Co nanosized composite powders with in situ carbon and gas carbon sources , 2016, Metals and Materials International.

[8]  J. Ruan,et al.  Investigation on morphology evolution of coarse grained WC–6Co cemented carbides fabricated by ball milling route and hydrogen reduction route , 2016 .

[9]  A. Mateo,et al.  Intrinsic hardness of constitutive phases in WC–Co composites: Nanoindentation testing, statistical analysis, WC crystal orientation effects and flow stress for the constrained metallic binder , 2015 .

[10]  I. Konyashin,et al.  History of cemented carbides in the Soviet Union , 2015 .

[11]  H. Miao,et al.  A review of cemented carbides for rock drilling: An old but still tough challenge in geo-engineering , 2013 .

[12]  Jun Zhao,et al.  Three-point bending fatigue behavior of WC–Co cemented carbides , 2013 .

[13]  J. Missiaen,et al.  Discussion of Nonconventional Effects in Solid‐State Sintering of Cemented Carbides , 2009 .

[14]  H. Sohn,et al.  Grain growth during the early stage of sintering of nanosized WC–Co powder , 2008 .

[15]  A. V. Shatov,et al.  Fracture of WC–Ni cemented carbides with different shape of WC crystals , 2008 .

[16]  M. Nygren,et al.  Homogeneous WC–Co-Cemented Carbides from a Cobalt-Coated WC Powder Produced by a Novel Solution-Chemical Route , 2007 .

[17]  A. Silva,et al.  The spreading of cobalt, nickel and iron on tungsten carbide and the first stage of hard metal sintering , 2003 .

[18]  H. Andren,et al.  Microstructures of cemented carbides , 2001 .

[19]  M. Gee,et al.  Effects of microstructure on the thermo-mechanical fatigue response of hardmetals using a new miniaturized testing rig , 1999 .

[20]  A. V. Shatov,et al.  The shape of WC crystals in cemented carbides , 1998 .

[21]  L. S. Sigl,et al.  Experimental study of the mechanics of fracture in WC-Co alloys , 1987, Metallurgical and Materials Transactions A.

[22]  Z. Fang,et al.  Coarsening, densification, and grain growth during sintering of nano-sized powders—A perspective , 2017 .

[23]  J. Ruan,et al.  Influences of the preparation methods of WC–Co powders on the sintering and microstructure of coarse grained WC–8Co hardmetals , 2015 .

[24]  Andreas Blomqvist,et al.  Trends in the P/M hard metal industry , 2015 .

[25]  T. Laoui,et al.  Effect of milling temperature on the synthesis and consolidation of nanocomposite WC–10Co powders , 2009 .

[26]  M. Muhammed,et al.  Processing of nanostructured WC-Co powder from precursor obtained by co-precipitation , 1999 .

[27]  B. Kear,et al.  Synthesis of nanophase WC powder by a displacement reaction process , 1997 .