Smooth macro-elements on Powell-Sabin-12 splits

Macro-elements of smoothness C r are constructed on Powell-Sabin-12 splits of a triangle for all r ≥ 0. These new elements complement those recently constructed on Powell-Sabin-6 splits and can be used to construct convenient superspline spaces with stable local bases and full approximation power that can be applied to the solution of boundary-value problems and for interpolation of Hermite data.

[1]  Larry L. Schumaker,et al.  Dual bases for spline spaces on cells , 1988, Comput. Aided Geom. Des..

[2]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..

[3]  Ming-Jun Lai,et al.  On C 2 quintic spline functions over triangulations of Powell-Sabin's type , 1996 .

[4]  Larry L. Schumaker,et al.  Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..

[5]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Clough-Tocher triangulations , 2001, Numerische Mathematik.

[6]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[7]  Larry L. Schumaker,et al.  Super spline spaces of smoothnessr and degreed≥3r+2 , 1991 .

[8]  D. Wilhelmsen,et al.  A Markov inequality in several dimensions , 1974 .

[9]  Schumaker,et al.  Upper and Lower Bounds on the Dimension of Superspline Spaces , 2003 .

[10]  Larry L. Schumaker,et al.  Fitting scattered data on sphere-like surfaces using spherical splines , 1996 .

[11]  A. Ženíšek Interpolation polynomials on the triangle , 1970 .

[12]  Larry L. Schumaker,et al.  Quadrilateral Macroelements , 2002, SIAM J. Math. Anal..

[13]  Larry L. Schumaker,et al.  On the approximation power of bivariate splines , 1998, Adv. Comput. Math..

[14]  Peter Alfeld,et al.  Bivariate spline spaces and minimal determining sets , 2000 .

[15]  Larry L. Schumaker,et al.  Dimension and local bases of homogeneous spline spaces , 1996 .

[16]  Larry L. Schumaker,et al.  Smooth macro-elements based on Clough-Tocher triangle splits , 2002, Numerische Mathematik.

[17]  Larry L. Schumaker,et al.  On super splines and finite elements , 1989 .

[18]  Mohammed Laghchim-Lahlou,et al.  Eléments finis polynomiaux composés de classe Cr , 1993 .